
Principles of Equation-Based
Object-Oriented Modeling and Languages

David Broman
Associate Professor, KTH Royal Institute of Technology

Assistant Research Engineer, University of California, Berkeley

Mini-course, Scuola Superiore Sant'Anna, Pisa, Italy.
December 9-10, 2014

Module A: EOO Languages and Modelica Fundamentals

Some of the slides are based a OSMC tutorials and contributed by
Peter Fritzson (Based on book and lecture nodes), David Broman,
Emma Larsdotter Nilsson, Peter Bunus, Adrian Pop, Jan Brugård,
Mohsen Torabzadeh-Tari, and Adeel Asghar.
Copyright © Open Source Modelica Consortium.

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

2

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Course Structure

Module A
EOO Languages and Modelica Fundamentals

Module B
DAEs and Algorithms in EOO Languages

Module C
Modelyze – Defining Equation-Based DSLs

Module D
Co-simulation and the Functional Mock-up Interface

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

3

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Agenda

Part II

Modelica Overview
Part I

EOO Languages for CPS
Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Part IV

Modeling in OpenModelica
Part III

Acausal Connection
Semantics in Modelica

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

4

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Part I

EOO Languages for CPS

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

5

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Cyber-Physical Systems

Aircraft Automotive
Process Industry and
Industrial Automation

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

6

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Cyber-Physical Systems Design

Physical system (the plant) Cyber system: Computation (embedded) + Networking

Sensors

Actuators

System

Model

Modeling

Equation-based model

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Various models of computation (MoC)

Simulation with
timing properties

Modeling

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

7

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Equation-Based Object-Oriented (EOO)
Languages

Equation-Based
Object-Oriented

(EOO)

Domain-Specific
Language (DSL)

•  Primarily domain:
 Modeling of physical
 systems

Models and Objects

•  Object in e.g., Java, C++:
 object = data + methods

•  Multiple physical domains:
 e.g., mechanical, electrical,
 hydraulic

•  Objects in EOO languages:
 object = data + equations

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

8

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Equation-Based
Object-Oriented

(EOO)

Domain-Specific
Language (DSL)

•  Primarily domain:
 Modeling of physical
 systems

Models and Objects

•  Object in e.g., Java, C++:
 object = data + methods

•  Multiple physical domains:
 e.g., mechanical, electrical,
 hydraulic

•  Objects in EOO languages:
 object = data + equations

objects (components)"

ports"

connections"

EOO model (textual) EOO model (graphical)

Equation-Based Object-Oriented (EOO)
Languages

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

9

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Equation-Based
Object-Oriented

(EOO)

Domain-Specific
Language (DSL)

•  Primarily domain:
 Modeling of physical
 systems

Models and Objects

•  Object in e.g., Java, C++:
 object = data + methods

•  Multiple physical domains:
 e.g., mechanical, electrical,
 hydraulic

•  Objects in EOO languages:
 object = data + equations

Acausality

•  At the equation-level
 u = R * i

•  At the object connection level

Equation-Based Object-Oriented (EOO)
Languages

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

10

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Equation-Based
Object-Oriented

(EOO)

Domain-Specific
Language (DSL)

•  Primarily domain:
 Modeling of physical
 systems

Models and Objects

•  Object in e.g., Java, C++:
 object = data + methods

•  Multiple physical domains:
 e.g., mechanical, electrical,
 hydraulic

•  Objects in EOO languages:
 object = data + equations

Acausality

•  At the equation-level
 u = R * i

•  At the object connection level

acausal (non-causal)

Direction not determined at modeling time!

causal

Physical topology !
is lost!

Equation-Based Object-Oriented (EOO)
Languages

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

11

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Equation-Based
Object-Oriented

(EOO)

Domain-Specific
Language (DSL)

•  Primarily domain:
 Modeling of physical
 systems

Models and Objects

•  Object in e.g., Java, C++:
 object = data + methods

•  Multiple physical domains:
 e.g., mechanical, electrical,
 hydraulic

•  Objects in EOO languages:
 object = data + equations

Acausality

•  At the equation-level
 u = R * i

•  At the object connection level

acausal (non-causal)

causal

Equation-Based Object-Oriented (EOO)
Languages

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

12

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Equation-Based
Object-Oriented

(EOO)

Domain-Specific
Language (DSL)

•  Primarily domain:
 Modeling of physical
 systems

Models and Objects

•  Object in e.g., Java, C++:
 object = data + methods

•  Multiple physical domains:
 e.g., mechanical, electrical,
 hydraulic

•  Objects in EOO languages:
 object = data + equations

Acausality

•  At the equation-level
 u = R * i

•  At the object connection level

•  Modelica
•  VHDL-AMS
•  gPROMS
•  Modelyze
•  …

Equation-Based Object-Oriented (EOO)
Languages

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

13

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

www.eoolt.org

The International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools (EOOLT)
The main workshop concerning EOO language and tool
research.

•  First workshop in year 2007
•  6 workshops so far.
•  Proceedings published by ACM (year 2014)

The Modelica Conference)
The main conference concerning Modelica modeling and
Modelica tools.

•  10 international conferences (2000-2014)
•  Proceedings published by Linköping Electronic Press.

Conferences and Workshops

www.modelica.org

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

14

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Part II

Modelica Overview

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

15

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

What is Modelica?

Robotics
Automotive
Aircrafts
Satellites
Power plants
Systems biology

A language for modeling of complex physical systems

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

16

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Primary designed for simulation, but there are also other
usages of models, e.g. optimization.

A language for modeling of complex physical systems

What is Modelica?

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

17

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

i.e., Modelica is not a tool

Free, open language specification:

Available at: www.modelica.org

A language for modeling of complex physical systems

What is Modelica?

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

18

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

SimulationX by ITI GmbH

Dymola by Dassault Systemes

LMS Imagine.Lab AMESim by LMS

MapleSim by Maplesoft

MOSILAB by Fraunhofer FIRST

CyModelica by CyDesign Labs

OPTIMICA Studio by Modelon AB

MWorks by Suzhou Tongyuan

Wolfram SystemModeler by Wolfram

OpenModelica supported by OSMC

Jmodelica.org supported by Modelon

Modelicac (part of Scilab)

SimForge

Free Environments Commercial Environments

Modelica Tools

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

19

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

What is special about Modelica?

Multi-Domain
Modeling

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

20

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

What is special about Modelica?

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Acausal model
(Modelica)

Causal
block-based
model
(Simulink)

Keeps the physical
structure"
"

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

21

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

inertial
x
y

axis1

axis2

axis3

axis4

axis5

axis6

r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

q: angle
qd: angular velocity

qdd: angular acceleration

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic
=R
v0

S
rel

joint=0

S

Vs

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m))

Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

Rp
2=

50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

cut in

iRef

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

wSum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

What is special about Modelica?

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Hierarchical system
modeling

Courtesy of Martin Otter

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

22

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

What is special about Modelica?

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Typed
Declarative
Textual Language

A textual class-based language
OO primary used for as a structuring concept

Behaviour described declaratively using
•  Differential algebraic equations (DAE) (continuous-time)
•  Event triggers (discrete-time)

class VanDerPol "Van der Pol oscillator model"
 Real x(start = 1) "Descriptive string for x”;
 Real y(start = 1) "y coordinate”;
 parameter Real lambda = 0.3;
equation
 der(x) = y;
 der(y) = -x + lambda*(1 - x*x)*y;
end VanDerPol;

Differential equations"
"

Variable"
declarations"
"

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

23

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

What is special about Modelica?

Hybrid
Modeling

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Typed
Declarative
Textual Language

time

Continuous-time

Discrete-time

Hybrid modeling =
continuous-time + discrete-time modeling

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

24

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Translational

Position

Force

Linear momentum

Mechanical.
Translational

Some Domains

Domain
Type

Potential

Flow

Carrier

Modelica
Library

Electrical

Voltage

Current

Charge

Electrical.
Analog

Rotational

Angle

Torque

Angular
momentum

Mechanical.
Rotational

Magnetic

Magnetic
potential

Magnetic
flux rate

Magnetic flux

Hydraulic

Pressure

Volume flow

Volume

HyLibLight

Heat

Temperature

Heat flow

Heat

HeatFlow1D

Chemical

Chemical
potential

Particle flow

Particles

 Under
construction

Pneumatic

Presure

Mass flow

Air

PneuLibLight

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

25

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Modelica Standard Library

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

26

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Modelica in Autmotive Industry

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

27

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Modelica in Avionics

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

28

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Modelica in Power Generation
GTX Gas Turbine

Hello

Courtesy of Siemens Industrial Turbomachinery AB

Developed
by MathCore
for Siemens

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

29

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Brief Modelica History

Modelica design group meetings
•  First meeting in fall 1996
•  International group of people with expert knowledge in both language

design and physical modeling
•  Industry and academia

Modelica Language Versions

•  v1.0 (1997), v2.0 (2002) v.2.2 (2005) v.3.0 (2007) 3.1 (2009)
3.2 (2010), 3.2 revision 1 (2012), 3.3 revision 1 (2014)

Modelica Association established 2000
•  Open, non-profit organization

Modelica Conferences
•  10 international conferences (2000-2014)

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

30

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Typical Simulation Process

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

31

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Simple model - Hello World!

model HelloWorld "A simple equation"
 Real x(start=1);
 parameter Real a = -1;
equation
 der(x)= a*x;
end HelloWorld;

Equation: x� = - x
Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2
0.2
0.4
0.6
0.8
1

simulate(HelloWorld, stopTime = 2)
plot(x)

Name of model"

Continuous-time"
variable "

Initial condition"

Parameter, constant"
during simulation "

Differential equation "

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

32

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Textual and Graphical Models

A
C

R=10

R1

L=0.1

L

G

L=1"R=100"

Used model (defined elsewhere)"
Named component = 
model instance"

Modification of  
parameter value"

Connect
equations"

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

33

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

A
C

R=10

R1

L=0.1

L

G

L=1"R=100"

Equations and Inheritance

Inherits equations and "
components from "
TwoPin

Algebraic equation"

Differential equation"

Pin p, n and
Reals v and i
are copied to the
subclass

Equations are
copied as well.

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

34

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

A
C

R=10

R1

L=0.1

L

G

L=1"R=100"

Connectors (Ports)

Connectors are instances "
of a connector class.

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

35

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

A
C

R=10

R1

L=0.1

L

G

L=1"R=100"

Connections and Flow Variables

Equation from flow variables:"
L.n.i + AC.n.i + G.p.i = 0

Equations from potential variables:
L.n.v = AC.n.v
AC.n.v = G.p.v

Fundamental
concept making
acausal modeling
work (simplified)

The resulting
equation system is an
DAE.
(differential-algebraic
equations).

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

36

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Hybrid Modeling

time

Continuous-time

Discrete changes
in time

Hybrid modeling = continuous-time + discrete changes (events)
 (Using Modelica terminology)

Real x;
Voltage v;
Current i;

Events"

discrete Real x;
Integer i;
Boolean b;

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

37

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Event creation – when

when <conditions> then
 <equations>
end when;

when-equations

Only dependent on time, can be
scheduled in advance

Time event
when time >= 10.0 then
 ...
end when;

time
event 1 event 2 event 3

Equations only active at event times

State event
when sin(x) > 0.5 then
 ...
end when;

Related to a state. Check for  
zero-crossing

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

38

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Reinit - discontinuous changes

model BouncingBall "the bouncing ball model"
 parameter Real g=9.81; //gravitational acc.
 parameter Real c=0.90; //elasticity constant
 Real height(start=10),velocity(start=0);
equation
 der(height) = velocity;
 der(velocity)=-g;
 when height<0 then
 reinit(velocity, -c*velocity);
 end when;
end BouncingBall;

The value of a continuous-time state variable can be instantaneously changed by a
reinit-equation within a when-equation

Reinit ”assigns”
continuous-time variable
velocity a new value

Initial conditions

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

39

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Modelica – large and complex

We have just “scratched on the surface of the language”

•  Functions and algorithm sections
•  Arrays and matrices
•  Inner / outer variables (lookup in instance hierarchy)
•  Annotations
•  Loop constructs
•  Partial classes
•  Packages, blocks...
And much more...

Examples of the features which has not been covered

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

40

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Part III

Modeling in OpenModelica

Examples are based on Michael Tiller’s new book:
http://beta.book.xogeny.com/

OpenModelica Website
http://www.openmodelica.org/

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

41

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Part III

Acausal Connection
Semantics in Modelica

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

42

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Formalization of Connection Semantics

The following formalizes port-based connection semantics (as in Modelica).
An alternative is a node-based approach, used in e.g. Modelyze
[Broman&Nilsson, PADL 2012]

A Theory of Hybrid DAEs

David Broman
University of California, Berkeley

broman@eecs.berkeley.edu

Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
al. [2]. Edward’s constructive paper.

III. MODAL MODELS

IV. ACAUSAL CONNECTION SEMANTICS

In this section, we formalize port-based connection semantics
that are similar to the connection semantics used in for instance
Modelica [3]. An alternative approach is to use node-based
connection semantics [4], which are suitable for languages
based on the functional program paradigm.

A. Formalization

A closed acausal model can be defined as the combination of
a 5-tuple defining the structure of the model

(M,P,�, C, ⇢) (1)

and a 6-tuple defining the behavior in terms of equations of
all enclosed model instances

(X, pvar , fvar , g, iq , bq). (2)

An acausal model consists of a set of model instances M and
a set of ports P , where the mapping � : P ! M specifies that
each port uniquely belongs to a specific model instance.

Sum-to-zero equations can be generated using a function

sumtozero : C ! E (3)

defined as follows.

sumtozero(c) =

let {p1, . . . , pn} = c in
sign(p1, c) · fvar(p1) + . . .+ sign(pn, c) · fvar(pn) = 0

The sumtozero function makes use of a help function

sign(p, c) =

⇢
�1 if 9q 2 c. ⇢(�(q)) = �(p)
1 otherwise. (4)

Potential equations are generated using function

potential : C ! P(E) (5)

defined as follows.

potential(c) =

let {p1, . . . , pn} = c in
{pvar(p1)=pvar(p2), pvar(p2)=pvar(p3), . . . ,
pvar(pn�1)=pvar(pn)}

Structure:
Set of model instances M
Set of ports P
Port to model mapping � : P ! M
Set of port connection sets C ✓ P(P)
Parent model instance mapping ⇢ : M ! M [{>}

Variables and Equations:
Set of variables X ✓ X
Set of equations E
Port to potential variable mapping pvar : P ! X
Port to flow variable mapping fvar : P ! X
Initial guess value g : X ! R
Initial equations iq : M ! E
Behavior equations bq : M ! E

Fig. 1. Formalized model of FMI and connections between FMU instances.

B. Properties

V. DAE INDEX AND INDEX REDUCTION

BLT [5]. Tarjan [6]. Pantelides [7]. Dummy derivatives [8].
Dynamic state selection [9]. Pryce [10].

VI. HYBRIDCHARTS

VII. RELATED WORK

Modelyze [11]. Modelica [3]. Ptolemy II [12]. Node-
based connection semantics [4]. Algorithmic analysis of hybrid
systems [13]. Hybrid systems by Lee and Zheng [14].

VIII. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proceedings of the European Design and Test Conference.
IEEE, 1996, pp. 328–333.

[2] M. Mendler, T. R. Shiple, and G. Berry, “Constructive boolean circuits
and the exactness of timed ternary simulation,” Formal Methods in
System Design, vol. 40, no. 3, pp. 283–329, 2012.

A Theory of Hybrid DAEs

David Broman
University of California, Berkeley

broman@eecs.berkeley.edu

Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
al. [2]. Edward’s constructive paper.

III. MODAL MODELS

IV. ACAUSAL CONNECTION SEMANTICS

In this section, we formalize port-based connection semantics
that are similar to the connection semantics used in for instance
Modelica [3]. An alternative approach is to use node-based
connection semantics [4], which are suitable for languages
based on the functional program paradigm.

A. Formalization

A closed acausal model can be defined as the combination of
a 5-tuple defining the structure of the model

(M,P,�, C, ⇢) (1)

and a 6-tuple defining the behavior in terms of equations of
all enclosed model instances

(X, pvar , fvar , g, iq , bq). (2)

An acausal model consists of a set of model instances M and
a set of ports P , where the mapping � : P ! M specifies that
each port uniquely belongs to a specific model instance.

Sum-to-zero equations can be generated using a function

sumtozero : C ! E (3)

defined as follows.

sumtozero(c) =

let {p1, . . . , pn} = c in
sign(p1, c) · fvar(p1) + . . .+ sign(pn, c) · fvar(pn) = 0

The sumtozero function makes use of a help function

sign(p, c) =

⇢
�1 if 9q 2 c. ⇢(�(q)) = �(p)
1 otherwise. (4)

Potential equations are generated using function

potential : C ! P(E) (5)

defined as follows.

potential(c) =

let {p1, . . . , pn} = c in
{pvar(p1)=pvar(p2), pvar(p2)=pvar(p3), . . . ,
pvar(pn�1)=pvar(pn)}

Structure:
Set of model instances M
Set of ports P
Port to model mapping � : P ! M
Set of port connection sets C ✓ P(P)
Parent model instance mapping ⇢ : M ! M [{>}

Variables and Equations:
Set of variables X ✓ X
Set of equations E
Port to potential variable mapping pvar : P ! X
Port to flow variable mapping fvar : P ! X
Initial guess value g : X ! R
Initial equations iq : M ! E
Behavior equations bq : M ! E

Fig. 1. Formalized model of FMI and connections between FMU instances.

B. Properties

V. DAE INDEX AND INDEX REDUCTION

BLT [5]. Tarjan [6]. Pantelides [7]. Dummy derivatives [8].
Dynamic state selection [9]. Pryce [10].

VI. HYBRIDCHARTS

VII. RELATED WORK

Modelyze [11]. Modelica [3]. Ptolemy II [12]. Node-
based connection semantics [4]. Algorithmic analysis of hybrid
systems [13]. Hybrid systems by Lee and Zheng [14].

VIII. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proceedings of the European Design and Test Conference.
IEEE, 1996, pp. 328–333.

[2] M. Mendler, T. R. Shiple, and G. Berry, “Constructive boolean circuits
and the exactness of timed ternary simulation,” Formal Methods in
System Design, vol. 40, no. 3, pp. 283–329, 2012.

Structure

Init and Behavior Equations

A Theory of Hybrid DAEs

David Broman
University of California, Berkeley

broman@eecs.berkeley.edu

Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
al. [2]. Edward’s constructive paper.

III. MODAL MODELS

IV. ACAUSAL CONNECTION SEMANTICS

In this section, we formalize port-based connection semantics
that are similar to the connection semantics used in for instance
Modelica [3]. An alternative approach is to use node-based
connection semantics [4], which are suitable for languages
based on the functional program paradigm.

A. Formalization

A closed acausal model can be defined as the combination of
a 5-tuple defining the structure of the model

(M,P,�, C, ⇢) (1)

and a 6-tuple defining the behavior in terms of equations of
all enclosed model instances

(X, pvar , fvar , g, iq , bq). (2)

An acausal model consists of a set of model instances M and
a set of ports P , where the mapping � : P ! M specifies that
each port uniquely belongs to a specific model instance.

Sum-to-zero equations can be generated using a function

sumtozero : C ! E (3)

defined as follows.

sumtozero(c) =

let {p1, . . . , pn} = c in
sign(p1, c) · fvar(p1) + . . .+ sign(pn, c) · fvar(pn) = 0

The sumtozero function makes use of a help function

sign(p, c) =

⇢
�1 if 9q 2 c. ⇢(�(q)) = �(p)
1 otherwise. (4)

Potential equations are generated using function

potential : C ! P(E) (5)

defined as follows.

potential(c) =

let {p1, . . . , pn} = c in
{pvar(p1)=pvar(p2), pvar(p2)=pvar(p3), . . . ,
pvar(pn�1)=pvar(pn)}

Structure:
Set of model instances M
Set of ports P
Port to model mapping � : P ! M
Set of port connection sets C ✓ P(P)
Parent model instance mapping ⇢ : M ! M [{>}

Variables and Equations:
Set of variables X ✓ X
Set of equations E
Port to potential variable mapping pvar : P ! X
Port to flow variable mapping fvar : P ! X
Initial guess value g : X ! R
Initial equations iq : M ! E
Behavior equations bq : M ! E

Fig. 1. Formalized model of FMI and connections between FMU instances.

B. Properties

V. DAE INDEX AND INDEX REDUCTION

BLT [5]. Tarjan [6]. Pantelides [7]. Dummy derivatives [8].
Dynamic state selection [9]. Pryce [10].

VI. HYBRIDCHARTS

VII. RELATED WORK

Modelyze [11]. Modelica [3]. Ptolemy II [12]. Node-
based connection semantics [4]. Algorithmic analysis of hybrid
systems [13]. Hybrid systems by Lee and Zheng [14].

VIII. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proceedings of the European Design and Test Conference.
IEEE, 1996, pp. 328–333.

[2] M. Mendler, T. R. Shiple, and G. Berry, “Constructive boolean circuits
and the exactness of timed ternary simulation,” Formal Methods in
System Design, vol. 40, no. 3, pp. 283–329, 2012.

A Theory of Hybrid DAEs

David Broman
University of California, Berkeley

broman@eecs.berkeley.edu

Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
al. [2]. Edward’s constructive paper.

III. MODAL MODELS

IV. ACAUSAL CONNECTION SEMANTICS

In this section, we formalize port-based connection semantics
that are similar to the connection semantics used in for instance
Modelica [3]. An alternative approach is to use node-based
connection semantics [4], which are suitable for languages
based on the functional program paradigm.

A. Formalization

A closed acausal model can be defined as the combination of
a 5-tuple defining the structure of the model

(M,P,�, C, ⇢) (1)

and a 6-tuple defining the behavior in terms of equations of
all enclosed model instances

(X, pvar , fvar , g, iq , bq). (2)

An acausal model consists of a set of model instances M and
a set of ports P , where the mapping � : P ! M specifies that
each port uniquely belongs to a specific model instance.

Sum-to-zero equations can be generated using a function

sumtozero : C ! E (3)

defined as follows.

sumtozero(c) =

let {p1, . . . , pn} = c in
sign(p1, c) · fvar(p1) + . . .+ sign(pn, c) · fvar(pn) = 0

The sumtozero function makes use of a help function

sign(p, c) =

⇢
�1 if 9q 2 c. ⇢(�(q)) = �(p)
1 otherwise. (4)

Potential equations are generated using function

potential : C ! P(E) (5)

defined as follows.

potential(c) =

let {p1, . . . , pn} = c in
{pvar(p1)=pvar(p2), pvar(p2)=pvar(p3), . . . ,
pvar(pn�1)=pvar(pn)}

Structure:
Set of model instances M
Set of ports P
Port to model mapping � : P ! M
Set of port connection sets C ✓ P(P)
Parent model instance mapping ⇢ : M ! M [{>}

Variables and Equations:
Set of variables X ✓ X
Set of equations E
Port to potential variable mapping pvar : P ! X
Port to flow variable mapping fvar : P ! X
Initial guess value g : X ! R
Initial equations iq : M ! P(E)
Behavior equations bq : M ! P(E)

Fig. 1. Formalized model of FMI and connections between FMU instances.

B. Properties

V. DAE INDEX AND INDEX REDUCTION

BLT [5]. Tarjan [6]. Pantelides [7]. Dummy derivatives [8].
Dynamic state selection [9]. Pryce [10].

VI. HYBRIDCHARTS

VII. RELATED WORK

Modelyze [11]. Modelica [3]. Ptolemy II [12]. Node-
based connection semantics [4]. Algorithmic analysis of hybrid
systems [13]. Hybrid systems by Lee and Zheng [14].

VIII. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proceedings of the European Design and Test Conference.
IEEE, 1996, pp. 328–333.

[2] M. Mendler, T. R. Shiple, and G. Berry, “Constructive boolean circuits
and the exactness of timed ternary simulation,” Formal Methods in
System Design, vol. 40, no. 3, pp. 283–329, 2012.

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

43

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Generation of Connect Equations

Sum-to-zero equations

A Theory of Hybrid DAEs

David Broman
University of California, Berkeley

broman@eecs.berkeley.edu

Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
al. [2]. Edward’s constructive paper.

III. MODAL MODELS

IV. ACAUSAL CONNECTION SEMANTICS

In this section, we formalize port-based connection semantics
that are similar to the connection semantics used in for instance
Modelica [3]. An alternative approach is to use node-based
connection semantics [4], which are suitable for languages
based on the functional program paradigm.

A. Formalization

A closed acausal model can be defined as the combination of
a 5-tuple defining the structure of the model

(M,P,�, C, ⇢) (1)

and a 6-tuple defining the behavior in terms of equations of
all enclosed model instances

(X, pvar , fvar , g, iq , bq). (2)

An acausal model consists of a set of model instances M and
a set of ports P , where the mapping � : P ! M specifies that
each port uniquely belongs to a specific model instance.

Sum-to-zero equations can be generated using a function

sumtozero : C ! E (3)

defined as follows.

sumtozero(c) =

let {p1, . . . , pn} = c in
sign(p1, c) · fvar(p1) + . . .+ sign(pn, c) · fvar(pn) = 0

The sumtozero function makes use of a help function

sign(p, c) =

⇢
�1 if 9q 2 c. ⇢(�(q)) = �(p)
1 otherwise. (4)

Potential equations are generated using function

potential : C ! P(E) (5)

defined as follows.

potential(c) =

let {p1, . . . , pn} = c in
{pvar(p1)=pvar(p2), pvar(p2)=pvar(p3), . . . ,
pvar(pn�1)=pvar(pn)}

Structure:
Set of model instances M
Set of ports P
Port to model mapping � : P ! M
Set of port connection sets C ✓ P(P)
Parent model instance mapping ⇢ : M ! M [{>}

Variables and Equations:
Set of variables X ✓ X
Set of equations E
Port to potential variable mapping pvar : P ! X
Port to flow variable mapping fvar : P ! X
Initial guess value g : X ! R
Initial equations iq : M ! P(E)
Behavior equations bq : M ! P(E)

Fig. 1. Formalized model of FMI and connections between FMU instances.

B. Properties

V. DAE INDEX AND INDEX REDUCTION

BLT [5]. Tarjan [6]. Pantelides [7]. Dummy derivatives [8].
Dynamic state selection [9]. Pryce [10].

VI. HYBRIDCHARTS

VII. RELATED WORK

Modelyze [11]. Modelica [3]. Ptolemy II [12]. Node-
based connection semantics [4]. Algorithmic analysis of hybrid
systems [13]. Hybrid systems by Lee and Zheng [14].

VIII. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proceedings of the European Design and Test Conference.
IEEE, 1996, pp. 328–333.

[2] M. Mendler, T. R. Shiple, and G. Berry, “Constructive boolean circuits
and the exactness of timed ternary simulation,” Formal Methods in
System Design, vol. 40, no. 3, pp. 283–329, 2012.

Potential equations

A Theory of Hybrid DAEs

David Broman
University of California, Berkeley

broman@eecs.berkeley.edu

Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
al. [2]. Edward’s constructive paper.

III. MODAL MODELS

IV. ACAUSAL CONNECTION SEMANTICS

In this section, we formalize port-based connection semantics
that are similar to the connection semantics used in for instance
Modelica [3]. An alternative approach is to use node-based
connection semantics [4], which are suitable for languages
based on the functional program paradigm.

A. Formalization

A closed acausal model can be defined as the combination of
a 5-tuple defining the structure of the model

(M,P,�, C, ⇢) (1)

and a 6-tuple defining the behavior in terms of equations of
all enclosed model instances

(X, pvar , fvar , g, iq , bq). (2)

An acausal model consists of a set of model instances M and
a set of ports P , where the mapping � : P ! M specifies that
each port uniquely belongs to a specific model instance.

Sum-to-zero equations can be generated using a function

sumtozero : C ! E (3)

defined as follows.

sumtozero(c) =

let {p1, . . . , pn} = c in
sign(p1, c) · fvar(p1) + . . .+ sign(pn, c) · fvar(pn) = 0

The sumtozero function makes use of a help function

sign(p, c) =

⇢
�1 if 9q 2 c. ⇢(�(q)) = �(p)
1 otherwise. (4)

Potential equations are generated using function

potential : C ! P(E) (5)

defined as follows.

potential(c) =

let {p1, . . . , pn} = c in
{pvar(p1)=pvar(p2), pvar(p2)=pvar(p3), . . . ,
pvar(pn�1)=pvar(pn)}

Structure:
Set of model instances M
Set of ports P
Port to model mapping � : P ! M
Set of port connection sets C ✓ P(P)
Parent model instance mapping ⇢ : M ! M [{>}

Variables and Equations:
Set of variables X ✓ X
Set of equations E
Port to potential variable mapping pvar : P ! X
Port to flow variable mapping fvar : P ! X
Initial guess value g : X ! R
Initial equations iq : M ! P(E)
Behavior equations bq : M ! P(E)

Fig. 1. Formalized model of FMI and connections between FMU instances.

B. Properties

V. DAE INDEX AND INDEX REDUCTION

BLT [5]. Tarjan [6]. Pantelides [7]. Dummy derivatives [8].
Dynamic state selection [9]. Pryce [10].

VI. HYBRIDCHARTS

VII. RELATED WORK

Modelyze [11]. Modelica [3]. Ptolemy II [12]. Node-
based connection semantics [4]. Algorithmic analysis of hybrid
systems [13]. Hybrid systems by Lee and Zheng [14].

VIII. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proceedings of the European Design and Test Conference.
IEEE, 1996, pp. 328–333.

[2] M. Mendler, T. R. Shiple, and G. Berry, “Constructive boolean circuits
and the exactness of timed ternary simulation,” Formal Methods in
System Design, vol. 40, no. 3, pp. 283–329, 2012.

A Theory of Hybrid DAEs

David Broman
University of California, Berkeley

broman@eecs.berkeley.edu

Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
al. [2]. Edward’s constructive paper.

III. MODAL MODELS

IV. ACAUSAL CONNECTION SEMANTICS

In this section, we formalize port-based connection semantics
that are similar to the connection semantics used in for instance
Modelica [3]. An alternative approach is to use node-based
connection semantics [4], which are suitable for languages
based on the functional program paradigm.

A. Formalization

A closed acausal model can be defined as the combination of
a 5-tuple defining the structure of the model

(M,P,�, C, ⇢) (1)

and a 6-tuple defining the behavior in terms of equations of
all enclosed model instances

(X, pvar , fvar , g, iq , bq). (2)

An acausal model consists of a set of model instances M and
a set of ports P , where the mapping � : P ! M specifies that
each port uniquely belongs to a specific model instance.

Sum-to-zero equations can be generated using a function

sumtozero : C ! E (3)

defined as follows.

sumtozero(c) =

let {p1, . . . , pn} = c in
sign(p1, c) · fvar(p1) + . . .+ sign(pn, c) · fvar(pn) = 0

The sumtozero function makes use of a help function

sign(p, c) =

⇢
�1 if 9q 2 c. ⇢(�(q)) = �(p)
1 otherwise. (4)

Potential equations are generated using function

potential : C ! P(E) (5)

defined as follows.

potential(c) =

let {p1, . . . , pn} = c in
{pvar(p1)=pvar(p2), pvar(p2)=pvar(p3), . . . ,
pvar(pn�1)=pvar(pn)}

Structure:
Set of model instances M
Set of ports P
Port to model mapping � : P ! M
Set of port connection sets C ✓ P(P)
Parent model instance mapping ⇢ : M ! M [{>}

Variables and Equations:
Set of variables X ✓ X
Set of equations E
Port to potential variable mapping pvar : P ! X
Port to flow variable mapping fvar : P ! X
Initial guess value g : X ! R
Initial equations iq : M ! P(E)
Behavior equations bq : M ! P(E)

Fig. 1. Formalized model of FMI and connections between FMU instances.

B. Properties

V. DAE INDEX AND INDEX REDUCTION

BLT [5]. Tarjan [6]. Pantelides [7]. Dummy derivatives [8].
Dynamic state selection [9]. Pryce [10].

VI. HYBRIDCHARTS

VII. RELATED WORK

Modelyze [11]. Modelica [3]. Ptolemy II [12]. Node-
based connection semantics [4]. Algorithmic analysis of hybrid
systems [13]. Hybrid systems by Lee and Zheng [14].

VIII. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proceedings of the European Design and Test Conference.
IEEE, 1996, pp. 328–333.

[2] M. Mendler, T. R. Shiple, and G. Berry, “Constructive boolean circuits
and the exactness of timed ternary simulation,” Formal Methods in
System Design, vol. 40, no. 3, pp. 283–329, 2012.

A Theory of Hybrid DAEs

David Broman
University of California, Berkeley

broman@eecs.berkeley.edu

Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
al. [2]. Edward’s constructive paper.

III. MODAL MODELS

IV. ACAUSAL CONNECTION SEMANTICS

In this section, we formalize port-based connection semantics
that are similar to the connection semantics used in for instance
Modelica [3]. An alternative approach is to use node-based
connection semantics [4], which are suitable for languages
based on the functional program paradigm.

A. Formalization

A closed acausal model can be defined as the combination of
a 5-tuple defining the structure of the model

(M,P,�, C, ⇢) (1)

and a 6-tuple defining the behavior in terms of equations of
all enclosed model instances

(X, pvar , fvar , g, iq , bq). (2)

An acausal model consists of a set of model instances M and
a set of ports P , where the mapping � : P ! M specifies that
each port uniquely belongs to a specific model instance.

Sum-to-zero equations can be generated using a function

sumtozero : C ! E (3)

defined as follows.

sumtozero(c) =

let {p1, . . . , pn} = c in
sign(p1, c) · fvar(p1) + . . .+ sign(pn, c) · fvar(pn) = 0

The sumtozero function makes use of a help function

sign(p, c) =

⇢
�1 if 9q 2 c. ⇢(�(q)) = �(p)
1 otherwise. (4)

Potential equations are generated using function

potential : C ! P(E) (5)

defined as follows.

potential(c) =

let {p1, . . . , pn} = c in
{pvar(p1)=pvar(p2), pvar(p2)=pvar(p3), . . . ,
pvar(pn�1)=pvar(pn)}

Structure:
Set of model instances M
Set of ports P
Port to model mapping � : P ! M
Set of port connection sets C ✓ P(P)
Parent model instance mapping ⇢ : M ! M [{>}

Variables and Equations:
Set of variables X ✓ X
Set of equations E
Port to potential variable mapping pvar : P ! X
Port to flow variable mapping fvar : P ! X
Initial guess value g : X ! R
Initial equations iq : M ! P(E)
Behavior equations bq : M ! P(E)

Fig. 1. Formalized model of FMI and connections between FMU instances.

B. Properties

V. DAE INDEX AND INDEX REDUCTION

BLT [5]. Tarjan [6]. Pantelides [7]. Dummy derivatives [8].
Dynamic state selection [9]. Pryce [10].

VI. HYBRIDCHARTS

VII. RELATED WORK

Modelyze [11]. Modelica [3]. Ptolemy II [12]. Node-
based connection semantics [4]. Algorithmic analysis of hybrid
systems [13]. Hybrid systems by Lee and Zheng [14].

VIII. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proceedings of the European Design and Test Conference.
IEEE, 1996, pp. 328–333.

[2] M. Mendler, T. R. Shiple, and G. Berry, “Constructive boolean circuits
and the exactness of timed ternary simulation,” Formal Methods in
System Design, vol. 40, no. 3, pp. 283–329, 2012.

A Theory of Hybrid DAEs

David Broman
University of California, Berkeley

broman@eecs.berkeley.edu

Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
al. [2]. Edward’s constructive paper.

III. MODAL MODELS

IV. ACAUSAL CONNECTION SEMANTICS

In this section, we formalize port-based connection semantics
that are similar to the connection semantics used in for instance
Modelica [3]. An alternative approach is to use node-based
connection semantics [4], which are suitable for languages
based on the functional program paradigm.

A. Formalization

A closed acausal model can be defined as the combination of
a 5-tuple defining the structure of the model

(M,P,�, C, ⇢) (1)

and a 6-tuple defining the behavior in terms of equations of
all enclosed model instances

(X, pvar , fvar , g, iq , bq). (2)

An acausal model consists of a set of model instances M and
a set of ports P , where the mapping � : P ! M specifies that
each port uniquely belongs to a specific model instance.

Sum-to-zero equations can be generated using a function

sumtozero : C ! E (3)

defined as follows.

sumtozero(c) =

let {p1, . . . , pn} = c in
sign(p1, c) · fvar(p1) + . . .+ sign(pn, c) · fvar(pn) = 0

The sumtozero function makes use of a help function

sign(p, c) =

⇢
�1 if 9q 2 c. p 6= q ^ ⇢(�(q)) = �(p)
1 otherwise.

(4)

Potential equations are generated using function

potential : C ! P(E) (5)

defined as follows.

potential(c) =

let {p1, . . . , pn} = c in
{pvar(p1)=pvar(p2), pvar(p2)=pvar(p3), . . . ,
pvar(pn�1)=pvar(pn)}

Structure:
Set of model instances M
Set of ports P
Port to model mapping � : P ! M
Set of port connection sets C ✓ P(P)
Parent model instance mapping ⇢ : M ! M [{>}

Variables and Equations:
Set of variables X ✓ X
Set of equations E
Port to potential variable mapping pvar : P ! X
Port to flow variable mapping fvar : P ! X
Initial guess value g : X ! R
Initial equations iq : M ! P(E)
Behavior equations bq : M ! P(E)

Fig. 1. Formalized model of FMI and connections between FMU instances.

B. Properties

V. DAE INDEX AND INDEX REDUCTION

BLT [5]. Tarjan [6]. Pantelides [7]. Dummy derivatives [8].
Dynamic state selection [9]. Pryce [10].

VI. HYBRIDCHARTS

VII. RELATED WORK

Modelyze [11]. Modelica [3]. Ptolemy II [12]. Node-
based connection semantics [4]. Algorithmic analysis of hybrid
systems [13]. Hybrid systems by Lee and Zheng [14].

VIII. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proceedings of the European Design and Test Conference.
IEEE, 1996, pp. 328–333.

[2] M. Mendler, T. R. Shiple, and G. Berry, “Constructive boolean circuits
and the exactness of timed ternary simulation,” Formal Methods in
System Design, vol. 40, no. 3, pp. 283–329, 2012.

Not itself

Model
instance’s
parent
instance?

Outside
port?

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

44

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Summary and Conclusions

Part I
EOO Languages
for CPS

David Broman
dbro@kth.se

45

Part II
Modelica
Overview

Part V
Modeling in
OpenModelica

Part II
Acausal Connection
Semantics in Modelica

Summary and Conclusions

•  Equation-Based Object-Oriented (EOO) Languages have
reusable components because of acausal connections
and equations.

Thanks for listening!

Some key take away points:

•  Modelica is the state-of-the-art EOO language, used for
modeling of complex systems.

•  OpenModelica is free Modelica tool that can be
used for advanced physical modeling.

