

Principles of Equation-Based Object-Oriented Modeling and Languages

Module A: EOO Languages and Modelica Fundamentals

Mini-course, Scuola Superiore Sant'Anna, Pisa, Italy. December 9-10, 2014

David Broman

Associate Professor, KTH Royal Institute of Technology Assistant Research Engineer, University of California, Berkeley

Course Structure

M D D E LI C A

Module A

EOO Languages and Modelica Fundamentals

Module B DAEs and Algorithms in EOO Languages

Module C Modelyze – Defining Equation-Based DSLs

Module D

Co-simulation and the Functional Mock-up Interface

David	Broman
dbro@)kth.se

	Part I	Part II	Part II	Part V
David Broman	EOO Languages	Modelica	Acausal Connection	Modeling in
dbro@kth.se	for CPS	Overview	Semantics in Modelica	OpenModelica

Part I

EOO Languages for CPS

Part II Modelica Overview

Cyber-Physical Systems

Automotive

Process Industry and Industrial Automation

Aircraft

David Broman dbro@kth.se	Part I EOO Languages for CPS	Part II Modelica Overview	Part II Acausal Connection Semantics in Modelica	Part V Modeling in OpenModelica

6 КТŦ **Cyber-Physical Systems Design** $M_v - M_1$ $J_1 \dot{\omega_1} =$ $M_h - M_2$ $J_2 \dot{\omega}_2 =$ Simulation with ω_1 $-r\omega_2$ = $-r^{-1}M_2$ $M_1 =$ timing properties Model Various models of computation (MoC) Equation-based model Modeling Modeling Sensors System Actuators N.S. Cyber system: Computation (embedded) + Networking Physical system (the plant) **Part V** Modeling in OpenModelica **Part II** Acausal Connection Semantics in Modelica Part II Modelica Part I EOO Languages David Broman Overview dbro@kth.se for CPS

Equation-Based Object-Oriented (EOO) Languages

dbro@ktn.se for CPS Overview Semantics in Modelica OpenModelica	David Broman dbro@kth.se	rt I Part II O Languages Modelica CPS Overview	Acausal Connection Semantics in Modelica	Modeling in OpenModelica
---	-----------------------------	--	---	-----------------------------

dbro@kth.se

for CPS

Equation-Based Object-Oriented (EOO) Languages

Overview

8

OpenModelica

Semantics in Modelica

Equation-Based Object-Oriented (EOO) Languages

Equation-Based Object-Oriented (EOO) Languages

Equation-Based Object-Oriented (EOO) Languages

KTH

Domain-Specific Models and Objects Language (DSL) • Object in e.g., Java, C++: • Primarily domain: object = data + methods Modeling of physical Equation-Based systems **Object-Oriented** Objects in EOO languages: (EOO) object = data + equations • Multiple physical domains: e.g., mechanical, electrical, hydraulic Modelica VHDL-AMS At the equation-level gPROMS u = R * i Acausality Modelyze • At the object connection level

Conferences and Workshops

www.eoolt.org

The International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools (EOOLT) The main workshop concerning EOO language and tool research.

- First workshop in year 2007
- 6 workshops so far.
- Proceedings published by ACM (year 2014)

www.modelica.org

The Modelica Conference)

The main conference concerning Modelica modeling and Modelica tools.

- 10 international conferences (2000-2014)
- Proceedings published by Linköping Electronic Press.

	David Broman dbro@kth.se	Part I EOO Languages for CPS	Part II Modelica Overview	Part II Acausal Connection Semantics in Modelica	Part V Modeling in OpenModelica
--	-----------------------------	------------------------------------	--	--	--

Part II

Modelica Overview

usages of models, e.g. optimization.

Free, open language specification:

Available at: www.modelica.org

Modelica Tools

Commercial Environments

Dymola by Dassault Systemes SimulationX by ITI GmbH LMS Imagine.Lab AMESim by LMS MapleSim by Maplesoft MOSILAB by Fraunhofer FIRST CyModelica by CyDesign Labs OPTIMICA Studio by Modelon AB MWorks by Suzhou Tongyuan Wolfram SystemModeler by Wolfram

Free Environments

OpenModelica supported by OSMC Jmodelica.org supported by Modelon Modelicac (part of Scilab) SimForge

Some Domains

Domain Type	Potential	Flow	Carrier	Modelica Library
Electrical	Voltage	Current	Charge	Electrical. Analog
Translationa	l Position	Force	Linear momentum	Mechanical. Translational
Rotational	Angle	Torque	Angular momentum	Mechanical. Rotational
Magnetic	Magnetic potential	Magnetic flux rate	Magnetic flux	
Hydraulic	Pressure	Volume flow	Volume	HyLibLight
Heat	Temperature	Heat flow	Heat	HeatFlow1D
Chemical	Chemical potential	Particle flow	Particles	Under construction
Pneumatic	Presure	Mass flow	Air	PneuLibLight

Part I EOO Languages for CPS **Part II** Modelica Overview **Part II** Acausal Connection Semantics in Modelica

	Part I David Broman EOO Lar dbro@kth.se for CPS	nguages Part II Modelica Overview	Part II Acausal Connection Semantics in Modelica	Part V Modeling in OpenModelica
--	---	---	---	--

Modelica in Autmotive Industry

dbro@kth.se

Modelica in Power Generation GTX Gas Turbine

Brief Modelica History

Modelica design group meetings

- First meeting in fall 1996
- International group of people with expert knowledge in both language design and physical modeling
- Industry and academia

Modelica Language Versions

v1.0 (1997), v2.0 (2002) v.2.2 (2005) v.3.0 (2007) 3.1 (2009)
 3.2 (2010), 3.2 revision 1 (2012), 3.3 revision 1 (2014)

Modelica Association established 2000

Open, non-profit organization

Modelica Conferences

10 international conferences (2000-2014)

Typical Simulation Process

Simple model - Hello World!

 Part I
 Part II
 Part II
 Part V

 David Broman
 EOO Languages
 Modelica
 Acausal Connection
 Modeling in

 dbro@kth.se
 for CPS
 Overview
 Semantics in Modelica
 OpenModelica

Overview

Semantics in Modelica

dbro@kth.se

for CPS

Connections and Flow Variables

Hybrid Modeling

Hybrid modeling = continuous-time + discrete changes (events) (Using Modelica terminology)

The value of a *continuous-time* state variable can be instantaneously changed by a reinit-equation within a when-equation

Modelica – large and complex

We have just "scratched on the surface of the language"

Examples of the features which has not been covered

- Functions and algorithm sections
- Arrays and matrices
- Inner / outer variables (lookup in instance hierarchy)
- Annotations
- Loop constructs
- Partial classes
- · Packages, blocks...

And much more...

David Broman dbro@kth.se	Part I EOO Languages for CPS	Part II Modelica Overview	Part II Acausal Connection Semantics in Modelica	Part V Modeling in OpenModelica
-----------------------------	---	---------------------------------	---	--

Part III

Modeling in OpenModelica

Examples are based on Michael Tiller's new book: http://beta.book.xogeny.com/

OpenModelica Website http://www.openmodelica.org/

Part III

Acausal Connection Semantics in Modelica

David Broman	Part I	Part II	Part II	Part V
	EOO Languages	Modelica	Acausal Connection	Modeling in
UDIO@KIII.SE	101 043	Overview		Openimodelica

Formalization of Connection Semantics

The following formalizes *port-based* connection semantics (as in Modelica). An alternative is a *node-based* approach, used in e.g. Modelyze [Broman&Nilsson, PADL 2012]

Structure (M, P, σ, C, ρ)		Set of model instances Set of ports Port to model mapping Set of port connection sets Parent model instance mapping	$M P \\ \sigma : P \to M \\ C \subseteq \mathcal{P}(P) \\ \rho : M \to M \cup \{\top\}$
Init and Behavio $(X, pvar, fvar)$	r Equations $,g,iq,bq)$	Set of variables Set of equations Port to potential variable mappin Port to flow variable mapping Initial guess value Initial equations Behavior equations	$\begin{array}{ll} X \subseteq \mathbb{X} \\ \mathbb{E} \\ \text{ag} & pvar: P \to X \\ fvar: P \to X \\ g: X \to \mathbb{R} \\ iq: M \to \mathcal{P}(\mathbb{E}) \\ bq: M \to \mathcal{P}(\mathbb{E}) \end{array}$
David Broman dbro@kth.se	Part I EOO Languages for CPS	Part II Modelica Overview Part II Acausal Connectio Semantics in Mode	Part V n Modeling in lica OpenModelica

42

Summary and Conclusions

Part II Modelica Overview

Some key take away points:

- Equation-Based Object-Oriented (EOO) Languages have reusable components because of acausal connections and equations.
- Modelica is the state-of-the-art EOO language, used for modeling of complex systems.
- OpenModelica is free Modelica tool that can be used for advanced physical modeling.

Thanks for listening!

	Part I	Part II	Part II	Part V
David Broman	EOO Languages	Modelica	Acausal Connection	Modeling in
dbro@kth.se	for CPS	Overview	Semantics in Modelica	OpenModelica