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The International Workshop on Equation-Based  
Object-Oriented Modeling Languages and Tools (EOOLT)  
The main workshop concerning EOO language and tool 
research. 
 
•  First workshop in year 2007 
•  6 workshops so far.  
•  Proceedings published by ACM (year 2014)   

The Modelica Conference)  
The main conference concerning Modelica modeling and 
Modelica tools. 
 
•  10 international conferences (2000-2014) 
•  Proceedings published by Linköping Electronic Press. 
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A language for modeling of complex physical systems 

What is Modelica? 



Part I 
EOO Languages 
for CPS 

David Broman 
dbro@kth.se 

17 

Part II 
Modelica  
Overview 

Part V 
Modeling in 
OpenModelica 

Part II 
Acausal Connection 
Semantics in Modelica 

i.e., Modelica is not a tool 

Free, open language specification:  

Available at: www.modelica.org  

A language for modeling of complex physical systems 
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SimulationX by ITI GmbH  

Dymola by Dassault Systemes 

LMS Imagine.Lab AMESim by LMS 

MapleSim by Maplesoft 

MOSILAB by Fraunhofer FIRST 

CyModelica by CyDesign Labs 

OPTIMICA Studio by Modelon AB 

MWorks by Suzhou Tongyuan 

Wolfram SystemModeler by Wolfram 

OpenModelica supported by OSMC 

Jmodelica.org supported by Modelon 

Modelicac (part of Scilab) 

SimForge 

Free Environments Commercial Environments 

Modelica Tools 
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What is special about Modelica? 

Visual Acausal 
Component 

Modeling 

Multi-Domain 
Modeling 

Acausal model 
(Modelica) 

Causal  
block-based 
model 
(Simulink) 

Keeps the physical 
structure"
"
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What is special about Modelica? 

Visual Acausal 
Component 

Modeling 

Multi-Domain 
Modeling 

Hierarchical system 
modeling 

Courtesy of Martin Otter 
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What is special about Modelica? 

Visual Acausal 
Component 

Modeling 

Multi-Domain 
Modeling 

Typed 
Declarative  
Textual Language 

A textual class-based language 
OO primary used for as a structuring concept  

Behaviour described declaratively using 
•  Differential algebraic equations (DAE) (continuous-time)  
•  Event triggers (discrete-time)  

class VanDerPol  "Van der Pol oscillator model" 
  Real x(start = 1)  "Descriptive string for x”;  
  Real y(start = 1)  "y coordinate”;             
  parameter Real lambda = 0.3; 
equation 
  der(x) = y;                        
  der(y) = -x + lambda*(1 - x*x)*y;   
end VanDerPol; 

Differential equations"
"

Variable"
declarations"
"
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Component 
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Textual Language 

  

time 

Continuous-time 

Discrete-time 

Hybrid modeling =   
continuous-time + discrete-time modeling 
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Library 
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Modelica in Power Generation 
GTX Gas Turbine 

 

Hello 

Courtesy of Siemens Industrial Turbomachinery AB 

Developed 
by MathCore 
for Siemens 
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Brief Modelica History 

Modelica design group meetings 
•  First meeting in fall 1996  
•  International group of people with expert knowledge in both language 

design and physical modeling 
•  Industry and academia 
 
 
Modelica Language Versions 

•  v1.0 (1997), v2.0 (2002) v.2.2 (2005) v.3.0 (2007) 3.1 (2009) 
3.2 (2010), 3.2 revision 1 (2012), 3.3 revision 1 (2014) 

Modelica Association established 2000 
•  Open, non-profit organization 

Modelica Conferences 
•  10 international conferences (2000-2014) 
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Typical Simulation Process 
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Simple model - Hello World! 

model HelloWorld "A simple equation" 
  Real x(start=1); 
  parameter Real a = -1; 
equation 
  der(x)= a*x; 
end HelloWorld; 

Equation: x� = - x 
Initial condition: x(0) = 1 

Simulation in OpenModelica environment 
 

0.5 1 1.5 2 
0.2 
0.4 
0.6 
0.8 
1 

simulate(HelloWorld, stopTime = 2) 
plot(x) 

Name of model"

Continuous-time"
variable "

Initial condition"

Parameter, constant"
during simulation "

Differential equation "
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Textual and Graphical Models 

A
C

R=10

R1

L=0.1

L

G

L=1"R=100"

Used model (defined elsewhere)"
Named component = 
model instance"

Modification of  
parameter value"

Connect 
equations"
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A
C

R=10

R1

L=0.1

L

G

L=1"R=100"

Equations and Inheritance 

Inherits equations and "
components from "
TwoPin 

Algebraic equation"

Differential equation"

Pin p, n and 
Reals v and i  
are copied to the 
subclass 

Equations are 
copied as well. 
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A
C

R=10

R1

L=0.1

L

G

L=1"R=100"

Connectors (Ports) 

Connectors are instances "
of a connector class. 
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A
C

R=10

R1

L=0.1

L

G

L=1"R=100"

Connections and Flow Variables 

Equation from flow variables:"
L.n.i + AC.n.i + G.p.i = 0 

Equations from potential variables: 
L.n.v = AC.n.v 
AC.n.v = G.p.v 

Fundamental 
concept making 
acausal modeling 
work (simplified) 

The resulting 
equation system is an 
DAE.  
(differential-algebraic 
equations). 
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Hybrid Modeling 

  

time 

Continuous-time 

Discrete changes 
in time 

Hybrid modeling =  continuous-time + discrete changes (events) 
 (Using Modelica terminology) 

Real x; 
Voltage v; 
Current i; 

Events"

discrete Real x; 
Integer i; 
Boolean b; 
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Event creation – when  

when <conditions> then 
   <equations> 
end when; 

when-equations 

Only dependent on time, can be 
scheduled in advance 

Time event  
when time >= 10.0 then 
  ... 
end when; 

time 
event 1 event 2 event 3 

Equations only active at event times 

State event  
when sin(x) > 0.5 then 
  ... 
end when; 

Related to a state. Check for  
zero-crossing  
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Reinit  - discontinuous changes 

model BouncingBall "the bouncing ball model"  
  parameter Real g=9.81;   //gravitational acc.  
  parameter Real c=0.90;   //elasticity constant  
  Real height(start=10),velocity(start=0);  
equation  
  der(height) = velocity;  
  der(velocity)=-g;  
  when height<0 then  
    reinit(velocity, -c*velocity);  
  end when;  
end BouncingBall;  

The value of a continuous-time state variable can be instantaneously changed by a 
reinit-equation within a when-equation 

Reinit ”assigns”  
continuous-time variable 
velocity a new value 

Initial conditions 
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Modelica – large and complex 

We have just “scratched on the surface of the language”  

•  Functions and algorithm sections 
•  Arrays and matrices 
•  Inner / outer variables (lookup in instance hierarchy) 
•  Annotations 
•  Loop constructs 
•  Partial classes 
•  Packages, blocks... 
And much more... 

Examples of the features which has not been covered 
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Part III 
 

Modeling in OpenModelica 

Examples are based on Michael Tiller’s new book: 
http://beta.book.xogeny.com/ 

OpenModelica Website 
http://www.openmodelica.org/ 
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Acausal Connection  
Semantics in Modelica 
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Formalization of Connection Semantics 
  

The following formalizes port-based connection semantics (as in Modelica). 
An alternative is a node-based approach, used in e.g. Modelyze  
[Broman&Nilsson, PADL 2012] 

A Theory of Hybrid DAEs

David Broman
University of California, Berkeley

broman@eecs.berkeley.edu

Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
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Abstract—In this paper, we formalize a theory of hybrid
differential-algebraic equations (DAEs). More specifically, we
study the concepts of constructiveness, DAE index, index reduc-
tion, and modal models. We show how a sound understanding
of these concepts are esstential for defining a theory of hybrid
DAEs. Finally, we formally define a hybrid DAE formalism called
HybridCharts and show how models in this formalism can be
compiled into efficient simulation programs.

I. INTRODUCTION

II. CONSTRUCTIVENESS

Constructive analysis of cyclic circuits [1]. Mendler et
al. [2]. Edward’s constructive paper.

III. MODAL MODELS

IV. ACAUSAL CONNECTION SEMANTICS

In this section, we formalize port-based connection semantics
that are similar to the connection semantics used in for instance
Modelica [3]. An alternative approach is to use node-based
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based on the functional program paradigm.
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Summary and Conclusions 

•  Equation-Based Object-Oriented (EOO) Languages have 
reusable components because of acausal connections 
and equations. 

Thanks for listening! 

Some key take away points: 

•  Modelica is the state-of-the-art EOO language, used for 
modeling of complex systems. 

•  OpenModelica is free Modelica tool that can be 
used for advanced physical modeling. 


