

Principles of Equation-Based Object-Oriented Modeling and Languages

Module B: DAEs and Algorithms in EOO Languages

Mini-course, Scuola Superiore Sant'Anna, Pisa, Italy. December 9-10, 2014

David Broman

Associate Professor, KTH Royal Institute of Technology Assistant Research Engineer, University of California, Berkeley

Course Structure

Module A

EOO Languages and Modelica Fundamentals

Module B DAEs and Algorithms in EOO Languages

Module C Modelyze – Defining Equation-Based DSLs

Module D Co-simulation and the Functional Mock-up Interface

David Broman Part I Part II Part III Part IV dbro@kth.se DAE Basics Matching BLT Sorting Pantelides

Part I

DAE Basics

$$\dot{x} = -x + y - z$$
$$z = x^2 + y^2$$
$$z = x + x * y$$

Yes, in each step:

- 1. Solve for *y* in equation (2). x is known.
- Solve for x' in equation (1). Now both x and y are known.

In this case, we can actually symbolically transform this into an ODE directly.

(note that the DAE is nonlinear; we need to decide on a sign, which must be consistent with the initial values.)

DAE Index

 $\dot{x} = -x + y$

 $x^2 + y^2 = 10$

 $z = x^2 + y^2$

 $z = x + x \cdot y$

 $\dot{x} = -x + y - z$

<u>Definition</u>: The index of an DAE is the minimum number of times that all or part of the DAE must be differentiated with respect to t in order to determine x' as a continuous function of x and t.

(Brenan, Campbell, Petzold, 1989)

This definition is called the differential index.

Our first example was an index 1 DAE.

No differentiation is need to obtain an ODE. An ODE has index 0.

Example two has an algebraic loop, and the two algebraic equations are nonsingular. Example of an index 1 DAE.

Note that you can differentiate parts of the equation system once (equations (2) and (3)) to obtain an ODE. (Not recommended for numerical stability)

We will soon see examples where a system of equation is singular. These may be *higher-index DAEs (index > 1)*.

David Broman	Part I	Part II	Part III	Part IV	Part V
	DAE Basics	Matching	BLT Sorting	Pantelides	Dummy Derivatives
abro@ktn.se					

Part II

Matching

David Broman	Part I	Part II	Part III	Part IV	Part V
dbro@kth.se	DAE Basics	Matching	BLT Sorting	Pantelides	Dummy Derivatives

Example: Matching

System of equations

$$f_1(y) = 0f_2(\dot{x}_1, \dot{x}_2, y) = 0f_3(\dot{x}_2) = 0$$

Construct a bipartite graph

$$G = (F, V, E)$$

 $F = \{f_1, f_2, f_3\}$ $E = \{(f_1, y), (f_2, \dot{x}_1), V = \{\dot{x}_1, \dot{x}_2, y\}$ $(f_2, \dot{x}_2), (f_2, y), (f_3, \dot{x}_2)\}$

Incidence Matrix

Example: Matching MATCH(G)

1 assign $\leftarrow \emptyset$ 2for each $f \in G.F$ 3 do $C \leftarrow \emptyset$ if not MATCH-EQUATION($G, f, \underline{C}, assign, \emptyset$) 4 5then return (FALSE, assign) 6 return (TRUE, assign) **Exercise** Do each step of the algorithms and keep track of C and assign. MATCH-EQUATION $(G, f, \underline{C}, assign, vmap)$ Case A: For f2, use x1. 1 $C \leftarrow C \cup \{f\}$ $assign = \{ y \mapsto f_1, \dot{x}_1 \mapsto f_2, \dot{x}_2 \mapsto f_3 \}$ $\mathbf{2}$ if there exits a $v \in G.V$ such that $(f, v) \in G.E$ $C = \{f_1, f_2, f_3\}$ 3 and assign[v] = NIL and vmap[v] = NIL4 then $assign[v] \leftarrow f$ Case B: For f2, first use x2 return TRUE 5(Reassignment of x2) 6 else for each v where $(f, v) \in G.E$ and $v \notin C$ $assign = \{ y \mapsto f_1, \dot{x}_1 \mapsto f_2, \dot{x}_2 \mapsto f_3 \}$ and vmap[v] = NIL7 $C = \{f_1, f_2, f_3, \dot{x}_2, \}$ 8 do $C \leftarrow C \cup \{v\}$ 9 **if** MATCH-EQUATION $(G, assign[v], \underline{C}, assign, vmap)$ 10 then $assign[v] \leftarrow f$ 11 return TRUE 12return FALSE

David Broman dbro@kth.se

Part III BLT Sorting

Example: Pendulum

20

Part C

BLT Sorting

Algorithm: BLT Sort

ВLЛ	$\Gamma(G)$	Input: a bipart	te graph G	ì		
1	(match, assi	$gn) \leftarrow Match($	(G)			
2	if not match	'n				
3	then ret	urn error "Sing	ular"			
4						
5	$D.V \leftarrow G.F$	1				
6	$D.E \leftarrow \emptyset$					
7	for each $(f,$	$v) \in G.E$ wher	$e f \in G.F$	and $assign[v] \neq f$		
8	do $D.E$	$\leftarrow D.E \cup \{(ass$	ign[v], f)			
9						
10	MAKEEMPTY	Y(O)				
11	MAKEEMPTY	Y(S)				
12	$i \leftarrow 0$					
13	$low link \leftarrow \emptyset$					
14	$number \leftarrow \emptyset$					
15	for each $v \in$	= D.V				
16	do if nu	mber[v] = NIL				
17	${ m th}$	en StrongCo	NNECT $(v, .)$	$D, \underline{S}, \underline{i}, \underline{lowlink}, \underline{nur}$	$\underline{nber}, \underline{O})$	
18	return O	Output: a stac	k of sets o	f equation vertices	, where each set	
		represents an	equation I	block in the BLT ma	atrix.	
		Part I	Part II	Part III	Part IV	Part V
David B Ibro@k	roman th se	DAE Basics	Matching	BLT Sorting	Pantelides	Dummy Derivative

Algorithm: BLT Sort

BLT	(G)	Input: a bipartite	e graph G			
$\begin{array}{c} 1\\ 2\\ 3\end{array}$	(match, assi if not match then ret	$gn) \leftarrow MATCH(C)$ n urn error "Singu	r) lar"		Step 1 Find matching	
	$D.V \leftarrow G.F$ $D.E \leftarrow \emptyset$ for each $(f,$ do $D.E$	$v) \in G.E \text{ where} \ \leftarrow D.E \cup \{(assignmed for a start set) \}$	$f \in G.F$ $gn[v], f)\}$	and $assign[v] \neq f$	Step 2 Construct equatidependency gra	ion ph
$9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\$	$\begin{array}{l} \text{MAKEEMPTY}\\ \text{MAKEEMPTY}\\ i \leftarrow 0\\ lowlink \leftarrow \emptyset\\ number \leftarrow \emptyset\\ \textbf{for each } v \in \\ \textbf{do if } nu\\ \textbf{th}\\ \textbf{return } O \end{array}$	f(O) f(S)	$\underline{NECT}(v, L)$	D, <u>S, i, lowlink, num</u>	Step 3 Sort into blocks equations using Tarjan's strongly connected comp algorithm <i>uber</i> , <u>O</u>)	of ponent
represents an equation block in the BLT matrix.						
David Bro dbro@kth	oman 1.se	Part I DAE Basics	Part II Matching	BLT Sorting	Part IV Pantelides	Part V Dummy Deri

$$G = (F, V, E)$$

$$F = \{f_1, f_2, f_3, f_4, f_5, f_6\}$$

$$V = \{\dot{x}_1, \dot{x}_2, \dot{x}_3, \dot{x}_4, y_1, y_2\}$$

In Part 1 of BLT - matching $(match, assign) \leftarrow MATCH(G)$ **if** not match **then** return error "Singular"

Returns TRUE (steps omitted) with assignment $assign = \{\dot{x}_1 \mapsto f_2, \dot{x}_2 \mapsto f_3, \dot{x}_3 \mapsto f_6, \dot{x}_4 \mapsto f_1, y_1 \mapsto f_4, y_2 \mapsto f_5\}$

|--|

24 **Algorithm: BLT Sort** Input: a bipartite graph G BLT(G) $(match, assign) \leftarrow MATCH(G)$ 1 $\mathbf{2}$ if not *match* 3 then return error "Singular" 4 $D.V \leftarrow G.F$ 5Step 2 6 $D.E \leftarrow \emptyset$ Construct equation for each $(f, v) \in G.E$ where $f \in G.F$ and $assign[v] \neq f$ dependency graph 78 do $D.E \leftarrow D.E \cup \{(assign[v], f)\}$ 9 10 MAKEEMPTY(O)11 MAKEEMPTY(S)12 $i \leftarrow 0$ 13 $lowlink \leftarrow \emptyset$ 14 $number \leftarrow \emptyset$ for each $v \in D.V$ 1516do if number[v] = NILthen $STRONGCONNECT(v, D, \underline{S}, \underline{i}, \underline{lowlink}, \underline{number}, \underline{O})$ 1718return OOutput: a stack of sets of equation vertices, where each set represents an equation block in the BLT matrix. Part I DAE Basics Part II Part III Part IV Part V David Broman BLT Sorting Matching Pantelides **Dummy Derivatives** dbro@kth.se

Algorithm: BLT Sort

	ВLЛ	$\Gamma(G)$	Input: a bipart	ite graph G			
	1	(match, assi	$ign) \leftarrow Match($	(G)			
	2	if not match	h				
	3	then ret	urn error "Sing	gular"			
	4						
	5	$D.V \leftarrow G.F$	ק				
	6	$D.E \leftarrow \emptyset$					
	7	for each $(f,$	$(v) \in G.E$ when	e $f \in G.F$ at	nd $assign[v] \neq f$		
	8	do $D.E$	$\leftarrow D.E \cup \{(ass$	$sign[v], f)\}$			
	9						
	10	MAKEEMPT	$\mathbf{Y}(O)$			Step 3	
	11	MAKEEMPT	$\mathbf{Y}(S)$			Sort into blocks	of
	12	$i \leftarrow 0$				equations using	
	13	$lowlink \leftarrow \emptyset$	4			Tarjan's strongly	,
	14	$number \leftarrow \emptyset$)			connected comp	onent
	15	for each $v \in$	$\in D.V$			algorithm	
	16	do if nu	umber[v] = NIL				
	17	th	en StrongCo	$\operatorname{NNECT}(v, D,$	$\underline{S, i, lowlink, nut}$	$\underline{mber}, \underline{O})$	
	18	return O	Output: a stac	ck of sets of e	equation vertices	, where each set	
			represents an	equation blo	ock in the BLT m	atrix.	
D	avid B	roman	Part I DAE Basics	Part II Matching	Part III BLT Sorting	Part IV Pantelides	Part V Dummy Deriv <u>atives</u>
a	ло@к	un.se					

Algorithm: StrongConnect (Tarjan)

STRONGCONNECT $(v, D, \underline{S}, \underline{i}, \underline{lowlink}, \underline{number}, \underline{O})$ $i \leftarrow i + 1$ 1 $\mathbf{2}$ $lowlink[v] \leftarrow i$ $number[v] \leftarrow i$ 3 PUSH(S, v)4 5for each $w \in D.V$ where $(v, w) \in D.E$ do if number[w] = NIL6 7 then STRONGCONNECT $(w, D, \underline{S}, \underline{i}, \underline{lowlink}, \underline{number}, \underline{O})$ 8 $lowlink[v] \leftarrow MIN(lowlink[v], lowlink[w])$ 9 else if $w \in S$ and number[w] < number[v]10then $lowlink[v] \leftarrow MIN(lowlink[v], number[w])$ if lowlink[v] = number[v]11 12**then** $eqset \leftarrow \emptyset$ while not ISEMPTY(S) and $number[TOP(S)] \ge number[v]$ 1314**do** $eqset \leftarrow eqset \cup \{POP(S)\}$ 15PUSH(O, eqset)16return

David Broman Part I Part II Part III Part IV Part V dbro@kth.se DAE Basics Matching BLT Sorting Pantelides Dummy Derivative	es
--	----

Part IV

Pantelides

Example: Pendulum

Pendulum: Graph Construction

System of equations

$$\begin{aligned} \dot{x} &= u \\ \dot{y} &= v \\ \dot{u} &= \lambda \cdot x \\ \dot{v} &= \lambda \cdot y - g \\ x^2 + y^2 &= L \end{aligned} \qquad \begin{aligned} f_1(\dot{x}, u) &= 0 \\ f_2(\dot{y}, v) &= 0 \\ f_3(\dot{u}, \lambda, x) &= 0 \\ f_4(\dot{v}, \lambda, y) &= 0 \\ f_5(x, y) &= 0 \end{aligned}$$

Note that we include both differentiated and not differentiated variables.

 $\label{eq:Gamma} \begin{array}{l} \mbox{Construct a bipartite graph} \\ G = (F,V,E) \end{array}$

$$F = \{f_1, f_2, f_3, f_4, f_5\}$$

$$V = \{x, y, u, v, \dot{x}, \dot{y}, \dot{u}, \dot{v}, \lambda\}$$

$$E = \{(f_1, \dot{x}), (f_1, u), (f_2, \dot{y}), (f_2, v), (f_3, \dot{u}), (f_3, \lambda), (f_3, x), (f_4, \dot{v}), (f_4, \lambda), (f_4, y), (f_5, x), (f_5, y)\}$$

 David Broman
 Part I
 Part II
 Part IV
 Part V

 dbro@kth.se
 DAE Basics
 Matching
 BLT Sorting
 Pantelides
 Dummy Derivatives

Algorithm: Pantelides

Pan 1	TELIDES $(G, \underline{vmap}, \underline{eqmap})$	Mapping variables to differentiated variables	Mapping equations to their differentiated version					
1	$assign \leftarrow \psi$	$(1 \cdot c dy)$	$\int (c_1 \cdot c_2) df c_1$					
2 2	do $f \neq c$	$vmap[v] = \begin{cases} v' & \text{if } \frac{dv}{dt} = v' \end{cases}$	$eqmap[f] = \begin{cases} f & \text{if } \frac{d}{dt} = f \end{cases}$					
	$do f \leftarrow e$	I NIL otherwise	NIL otherwise					
4	repeat							
6	$\bigcup \leftarrow \emptyset$	$\int \int dx T C U F C U A T U C N (C f C assign symp$						
7	$\begin{array}{c} mulch \leftarrow \mathbf{N} \\ \mathbf{if} \text{ pot mat} \end{array}$	TATCH-EQUATION $(G, J, \underline{C}, \underline{assign}, vina)$	(p)					
0		$C_{\mathcal{H}}$						
0	then for	each $v \in C$ where $v \in G.V$	C V					
10		do let v be a vertex, such that $v \notin v$	G.V					
10		$vmap[v] \leftarrow v$						
11	c	$G.V \leftarrow G.V \cup \{v\}$						
12	for each $f \in C$ where $f \in G.F$							
13	do let f' be a vertex, such that $f' \notin G.F$							
14		$eqmap[f] \leftarrow f'$						
15		$G.F \leftarrow G.F \cup \{f'\}$						
16		for each $v \in G.V$ where $(f, v) \in G$	G.E					
17		do $G.E \leftarrow G.E \cup \{(f', v), (f', v)\}$	$vmap[v])\}$					
18	for	each $v \in C$ where $v \in G.V$	• • • • • •					
19		do $assign[vmap[v]] \leftarrow eqmap[assign[v]]$	Assigns variables to equations					
20	f -	- eqmap[f]	$\int f \text{if } f \text{ matches } v$					
21	until match		assign[v] = NIL otherwise					
22	return assign							
D	Part I	Part II Part III	Part IV Part V					
dbro(@kth.se DAE Basics	Matching BLT Sorting	Pantelides Dummy Derivatives					

Algorithm: Pantelides

Pan	TELIDES (G, vma)	(p, eqmap)
1	assign $\leftarrow \emptyset$	
2	for each $e \in G$	F Try to find a match for equation f_{e}
3	do $f \leftarrow e$	
4	repeat	
5		$C \leftarrow \emptyset$
6		$match \leftarrow MATCH-EQUATION(G, f, \underline{C}, assign, vmap)$
7		if not match
8		then for each $v \in C$ where $v \in G.V$
9		do let v' be a vertex, such that $v' \notin G.V$
10		$vmap[v] \leftarrow v'$
11		$G.V \leftarrow G.V \cup \{v'\}$
12		for each $f \in C$ where $f \in G.F$
13		do let f' be a vertex, such that $f' \notin G.F$
14		$eqmap[f] \leftarrow f'$
15		$G.F \leftarrow G.F \cup \{f'\}$
16		for each $v \in G.V$ where $(f, v) \in G.E$
17		$\mathbf{do} \ G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}$
18		for each $v \in C$ where $v \in G.V$
19		$\mathbf{do} \ assign[vmap[v]] \leftarrow eqmap[assign[v]]$
20		$f \leftarrow eqmap[f]$
21	\mathbf{until}	match
22	return assign	
Davio dbr <u>o(</u>	d Broman @kth.se	Part I Part II Part IV Part V DAE Basics Matching BLT Sorting Pantelides Dummy Derivativ

Pendulum

Algorithm: Pantelides

PANTELIDES(G, vmap, eqmap)assign $\leftarrow \emptyset$ 1 $\mathbf{2}$ for each $e \in G.F$ 3 **do** $f \leftarrow e$ repeat 4 5 $C \leftarrow \emptyset$ $match \leftarrow MATCH-EQUATION(G, f, \underline{C}, assign, vmap)$ 6 7 if not *match* 8 then for each $v \in C$ where $v \in G.V$ 9 **do** let v' be a vertex, such that $v' \notin G.V$ 10 $vmap[v] \leftarrow v'$ $G.V \leftarrow G.V \cup \{v'\}$ 11 for each $f \in C$ where $f \in G.F$ 12**do** let f' be a vertex, such that $f' \notin G.F$ 1314 $eqmap[f] \leftarrow f'$ $G.F \leftarrow G.F \cup \{f'\}$ 15for each $v \in G.V$ where $(f, v) \in G.E$ 16Repeat again (match 17do $G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}$ was FALSE), but now 18for each $v \in C$ where $v \in G.V$ with the differentiated 19**do** $assign[vmap[v]] \leftarrow eqmap[assign[v]]$ equation f_{6} 20 $f \leftarrow eqmap[f]$ 21until match $eqmap = \{f_5 \mapsto f_6\}$ 22return assign Part IV Pantelides **Part I** DAE Basics Part II Matching Part V Part III David Broman **BLT Sorting Dummy Derivatives** dbro@kth.se

Pendulum

Algorithm: Pantelides

David Broman

dbro@kth.se

Pendulum

State before creating equation nodes $vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}$ $eqmap = \{f_5 \mapsto f_6\}$

 $assign = \{\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4\}$ $C = \{f_6, \dot{x}, f_1, \dot{y}, f_2\}$ for each $f \in C$ where $f \in G.F$ do let f' be a vertex, such that $f' \notin G.F$ $eqmap[f] \leftarrow f'$ $G.F \leftarrow G.F \cup \{f'\}$ for each $v \in G.V$ where $(f, v) \in G.E$ do $G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}$

Part II Matching

Part III

BLT Sorting

Part I DAE Basics

Part IV

Pantelides

x

Part V

Dummy Derivatives

State before creating equation nodes

Algorithm: Pantelides

Pan	TELIDES (G, vma)	(p, eqmap)					
1	$assign \leftarrow \emptyset$						
2	for each $e \in G$.F					
3	do $f \leftarrow e$						
4	repeat						
5		$C \leftarrow \emptyset$					
6		$match \leftarrow Match$	I-EQUATION $(G,$	$f, \underline{C}, assign, $	vmap)		
7		if not <i>match</i>					
8		then for each	$v \in C$ where v	$\in G.V$			
9		do le	et v' be a vertex	, such that v	$\phi' \notin G.V$		
10		vi	$map[v] \leftarrow v'$				
11		G	$F.V \leftarrow G.V \cup \{v\}$	'}			
12		for each	$f \in C$ where f	$\in G.F$			
13		do le	et f' be a vertex	, such that f	$f' \notin G.F$		
14		eq	$qmap[f] \leftarrow f'$				
15		G	$f.F \leftarrow G.F \cup \{f\}$	·'}			
16		fc	or each $v \in G.V$	where (f, v)	$) \in G.E$		
17			do $G.E \leftarrow G$	$E \cup \{(f', v),$	(f', vmap[v])	<i>v</i>])}	
18		for each	$v \in C$ where v	$\in G.V$			
19		$\mathbf{do} \ a$	$ssign[vmap[v]] distribute{$	- eqmap[assistent]	gn[v]]	Third stars as inc	
20		$f \leftarrow eqm$	aap[f]		K	i nird step: assign	
21	until	match			~	variables to equations	
22	return assign					for new variables.	
		Part I	Part II	Part III	Part IV	/ Part V	
Davio dbroo	d Broman @kth.se	DAE Basics	Matching	BLT Sorting	Pantel	lides Dummy Derivativ	ves

KTH vetenskap vetenskap

Pendulum

After adding all equations

$$\begin{split} vmap &= \{ x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y} \} \\ eqmap &= \{ f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9 \} \\ assign &= \{ \dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v} \mapsto f_4 \} \\ C &= \{ f_6 \boxed{\dot{x}}, f_1 \boxed{\dot{y}}, f_2 \} \end{split}$$

for each $v \in C$ where $v \in G.V$ do $assign[vmap[v]] \leftarrow eqmap[assign[v]]$

After adding new assignments

David Broman Part I	Part II	Part III	Part IV	Part V
dbro@kth.se DAE Basics	Matching	BLT Sorting	Pantelides	Dummy Derivatives

Algorithm: Pantelides

Pan	TELIDES (G, vma)	(p, eqmap)				
1	$assign \leftarrow \emptyset$					
2	for each $e \in G$	$\cdot .F$				
3	do $f \leftarrow e$					
4	repeat					
5		$C \leftarrow \emptyset$				
6		$match \leftarrow Match$	I-EQUATION $(G$	$, f, \underline{C}, assign,$	vmap)	
7		if not <i>match</i>				
8		then for each	$v \in C$ where v	$e \in G.V$		
9		do le	et v' be a verte:	x, such that ι	$p' \notin G.V$	
10		vi	$map[v] \leftarrow v'$			
11		G	$f.V \leftarrow G.V \cup \{a\}$	v'}		
12		for each	$f \in C$ where f	$f \in G.F$		
13		do le	et f' be a verte	x, such that	$f' \notin G.F$	
14		eq	$qmap[f] \leftarrow f'$			
15		G	$F \leftarrow G.F \cup \{g\}$	$f'\}$		
16		fo	or each $v \in G$.	V where (f, v)	$) \in G.E$	
17			do $G.E \leftarrow G$	$F.E \cup \{(f', v), v\}$	$(f', vmap[v])\}$	
18		for each	$v \in C$ where v	$e \in G.V$		
19		do as	ssign[vmap[v]] ·	$\leftarrow eqmap[assi]$	ign[v]]	
20		$f \leftarrow eqm$	ap[f]	Renea	t again with second	differentiated
21	until	match			n of equation five	anoronalatoa
22	return assign			101010		
Dovi	H Promon	Part I	Part II	Part III	Part IV	Part V
dbro	@kth.se	DAE Basics	Matching	BLT Sorting	Pantelides	Dummy Derivatives

x

Before matching

dbro@kth.se

Pendulum

Dummy Derivatives

Before matching			_		
$\boxed{vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}}$				Successful match!	
$eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}$					
assign = { $\dot{x} \mapsto f_1$,	$\dot{y} \mapsto f_2, \dot{u} \mapsto f_3, \dot{v}$	$\mapsto f_4,$			
$\ddot{x} \mapsto f_8,$	$\ddot{y} \mapsto f_9$			(f_1)	
MATCH-EQUATION $(G,$	$f, \underline{C}, assign, vmap$				
1 $C \leftarrow C \cup \{f\}$	·····			(f)	
2 if there exits a v	$\in G.V$ such that ($(f, v) \in G.E$		(J^2)	
3 and $assign[v]$	= NIL and $vmap[v]$	= NIL		\overline{f}	
4 then $assign[v]$	$\leftarrow f$			$\sqrt{3}$	
5 return TRUE				\sim	
6 else for each v where $(f, v) \in G.E$ and $v \notin C$				(f_4)	
7 and $vmap[v] = NIL$					
8 do $C \leftarrow C \cup \{v\}$				(f_5)	(i)
9 if	MATCH-EQUATIO	$N(G, assign[v], \underline{C}, assign[v])$	sign, vmap)		
10	then $assign[v] \leftarrow$	f		$\widehat{f_{\alpha}}$	
11	return TRU	Έ		(J_0)	
12 return false					
$vmap = \{x \mapsto \dot{x}$	$,y\mapsto \dot{y},u\mapsto \dot{u},v\mapsto \dot{u}$	$\rightarrow \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}$	}	U7	
$eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}$				f_{8}	(r)
$assign = \{ \dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_8, \dot{v} \mapsto f_4, $					
$\lambda \mapsto f_3, \ddot{x} \mapsto f_7, \ddot{y} \mapsto f_9\} $			(f_9)	(\ddot{y})	
$C = \{f_7, \ddot{x}, f_7\}$	$f_8, \dot{u}, f_3\}$			\smile	
	Part I	Part II	Part III	Part IV	Part V
David Broman dbro@kth.se	DAE Basics	Matching	BLT Sorting	Pantelides	Dummy Derivatives

Algorithm: Pantelides

Pan	TELIDES (G, \underline{vma})	$\underline{ap}, \underline{eqmap})$				
1	$assign \leftarrow \emptyset$		دا	et equation and	t successful match	
2	for each $e \in G$	F_{\longleftarrow}	La			•
3	do $f \leftarrow e$		Ale	gorithm termina	ites.	
4	repeat					
5		$C \leftarrow \emptyset$				
6		$match \leftarrow MATCH$	h-Equation	$(G, f, \underline{C}, \underline{assign}, $	vmap)	
7	if not match					
8	then for each $v \in C$ where $v \in G.V$					
9	do let v' be a vertex, such that $v' \notin G.V$					
10		ı	$vmap[v] \leftarrow v'$			
11	$G.V \leftarrow G.V \cup \{v'\}$					
12	for each $f \in C$ where $f \in G.F$					
13	do let f' be a vertex, such that $f' \notin G.F$					
14	$eqmap[f] \leftarrow f'$					
15	$G.F \leftarrow G.F \cup \{f'\}$					
16	for each $v \in G.V$ where $(f, v) \in G.E$					
17	do $G.E \leftarrow G.E \cup \{(f', v), (f', vmap[v])\}$					
18		for each	$v \in C$ when	$v \in G.V$		
19		do a	assign[vmap]	$v]] \leftarrow eqmap[assisting]$	ign[v]]	
20		$f \leftarrow eqn$	nap[f]			
21	\mathbf{until}	l match				
22	return assign					
		Part I	Part II	Part III	Part IV	Part V
Davio	d Broman	DAE Basics	Matching	BLT Sorting	Pantelides	Dummy Derivatives
	wkin.se					

Result of Pantelides on Pendulum

Result of Pantelides on Pendulum

 $vmap = \{x \mapsto \dot{x}, y \mapsto \dot{y}, u \mapsto \dot{u}, v \mapsto \dot{v}, \dot{x} \mapsto \ddot{x}, \dot{y} \mapsto \ddot{y}\}$ Is the system of equations $eqmap = \{f_5 \mapsto f_6, f_6 \mapsto f_7, f_1 \mapsto f_8, f_2 \mapsto f_9\}$ solvable if we replace the old assign = { $\dot{x} \mapsto f_1, \dot{y} \mapsto f_2, \dot{u} \mapsto f_8, \dot{v} \mapsto f_4,$ equations with their differentiated version? $\lambda \mapsto f_3, \ddot{x} \mapsto f_7, \ddot{y} \mapsto f_9 \}$ By substituting (8) and (9) we (1) $\dot{x} = u$ have (2) $\dot{y} = v$ $\ddot{x} = \lambda \cdot x$ (3) $\dot{u} = \lambda \cdot x$ $\ddot{y} = \lambda \cdot y - g$ (4) $\dot{v} = \lambda \cdot y - g$ $2x\ddot{x} + 2\dot{x}^2 + 2y\ddot{y} + 2\dot{y}^2 = 0$ (5) $x^2 + y^2 = L$ (6) $2x\dot{x} + 2y\dot{y} = 0$ Same result if converted Which is solvable for (7) $2x\ddot{x} + 2\dot{x}^2 + 2y\ddot{y} + 2\dot{y}^2 = 0$ highest derivative into order one equation (8) $\ddot{x} = \dot{u}$ \dot{y} \dot{x} \dot{u} λ \dot{v} $\lambda \quad \ddot{y} \quad \ddot{x}$ $(1 \ 0 \ 0 \ 0)$ f_2 (9) $\ddot{y} = \dot{v}$ $\begin{array}{ccc} f_1 \\ f_2 \\ f_3 \end{array} \begin{pmatrix} \mathbf{1} & 0 & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & 0 \\ 0 & \mathbf{1} & \mathbf{1} \end{pmatrix}$ f_1 0 1 0 0 0 f_5 $1 \ 1 \ 1 \ 0 \ 1$ f_3 0 0 1 1 0 1 0 0 0 1

Part V Dummy Derivatives

Part IV

Dummy Derivatives

Index Reduction

Should differentiated equations from Pantelides be used for index reduction?

 $\ddot{x} = \lambda \cdot x$ $\ddot{y} = \lambda \cdot y - g$ $2x\ddot{x} + 2\dot{x}^2 + 2y\ddot{y} + 2\dot{y}^2 = 0$

The reduced problem (index-1) is mathematically correct, but since equation

$$x^2 + y^2 = L$$

is not present, numerical approximation gives a "drifting problem". In our example, the pendulum's length will grow...

David Broman	
dhro@kth so	

Dummy Derivative

Basic Idea:

- Include all differentiated equations
- For each equation, introduce a "dummy derivative" variable.

$$\ddot{x} = \lambda \cdot x$$

$$y'' = \lambda \cdot y - g$$

$$x^{2} + y^{2} = L$$

$$2x\dot{x} + 2yy' = 0$$

$$2x\ddot{x} + 2\dot{x}^{2} + 2yy'' + 2y'^{2} = 0$$

All constraints are present and the number of equations and unknowns match.

The actual algorithm is presented by Mattson and Söderlind (1993)

References and Further Reading

lain S. Duff. On Algorithms for Obtaining a Maximum Transversal. ACM Transactions on Mathematical Software, 7(3):315–330, 1981.

lain S. Duff and John K. Reid. An Implementation of Tarjan's Algorithm for the Block Triangularization of a Matrix. ACM Transactions on Mathe- matical Software, 4(2):137–147, 1978.

S. E. Mattsson, H. Olsson, and H. Elmqvist. Dynamic selection of states in fymola. In Proceedings of the Modelica Workshop, pages 61–67, 2000.

S. E. Mattsson and G. Söderlind. Index reduction in differential-algebraic equations using dummy derivatives. SIAM Journal on Scientific Computing, 14(3):677–692, 1993.

C. C. Pantelides. The Consistent Initialization of Differential-Algebraic Sys- tems. SIAM Journal on Scientific and Statistical Computing, 9(2):213–231, 1988.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160, 1972.

Summary and Conclusions

David Broman	Part I	Part II	Part III	Part IV	Part V
dbro@kth.se	DAE Basics	Matching	BLT Sorting	Pantelides	Dummy Derivatives

Summary and Conclusions

Some key take away points:

- Matching finds a mapping between variables and equations. • Used both in BLT sorting and Pantelides algorithm.
- BLT sorts blocks of equation, where each block represents an algebraic loop. Uses matching and Tarjan's algorithm.
- **Pantelides algorithm** determine the subset of equations that needs to be differentiated.
- The Dummy Derivative method perform correct index reduction and avoids the drifting problem.

64

Thanks for listening!

David	Broman
dbro@)kth.se

Part IV