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Part I 
 

DAE Basics 

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

y(0) = 3 (5)

y(0) = �3 (6)

ẋ = �x+
p
10� x

2 (7)

ẋ = �x+ y � z (8)

z = x

2 + y

2 (9)

z = x+ x ⇤ y (10)

(11)
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DAE 

6 Pendulum Revisited

�T/l = �

m = 1

l2 = L

ẍ = � · x
ÿ = � · y � g

x2 + y2 = L

2xẋ+ 2yy0 = 0

2xẍ+ 2ẋ2 + 2yy00 + 2y02 = 0

7 DAE Basics

F (x, ẋ, y, t) = 0

where x,2 Rn, ẋ 2 Rn, y 2 Rm, F : G ✓ Rn ⇥ Rn ⇥ Rm ⇥ R ! Rn+m.

8 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

9 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

11

System of Differential algebraic equation 
(DAE) in general form: 
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We have n number of 
variables that appear 
differentiated 

We have m number of 
variables that do not 
appear differentiated 

We have n+m 
number of equations 

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

0

@

ẋ1 ẋ2 y

f1 0 0 1
f2 1 1 1
f3 0 1 0

1

A

1

ODE, initial value problem (IVP) 

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

1

Is this an ODE or an DAE? 

1 variable x is differentiated 
1 variable y is not differentiated 
2 equations 

Alternatively, a DAE can be defined as F(u',u) = 0, 
where F and u have the same dimensions and F is 
assumed to be sufficiently differential. 
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DAE, Example 1 

What should the initial value for y be? 

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

1

Is it an initial value problem (IVP)? 
1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

y(0) = 3 (5)

1

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

y(0) = 3 (5)

1

We need to find consistent initial values.  
Note that y(0) = -3 is also a consistent initial value. 
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1 DAE Index
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1 DAE Index

ẋ = �x (1)
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2 + y

2 = 10 (4)
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1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

y(0) = 3 (5)

1

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

y(0) = 3 (5)

y(0) = �3 (6)

1



Part I 
DAE Basics David Broman 

dbro@kth.se 

7 

Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

DAE, Example 1  

Yes, in each step: 
1.  Solve for y in equation (2). x is known. 
2.  Solve for x’ in equation (1). Now both x 

and y are known. 

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

1

Can we find an order that can solve 
these equations? 

In this case, we can actually symbolically transform this into an ODE directly. 

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

y(0) = 3 (5)

y(0) = �3 (6)

ẋ = �x+
p
10� x

2 (7)

1

(note that the DAE is nonlinear; we need to decide on a sign, which must 
be consistent with the initial values. ) 
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DAE, Example 2  

One solution approach (in each time step) 
1.  Solve (nonlinear) algebraic equations  

Is this an DAE? 

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

y(0) = 3 (5)

y(0) = �3 (6)

ẋ = �x+
p
10� x

2 (7)

ẋ = �x+ y � z (8)

z = x

2 + y

2 (9)

z = x+ x ⇤ y (10)

(11)

1

Can we find an order 
that can solve these 
equations? 

Yes, one differentiated variable 
(x) and two algebraic variables 
(y and z) 

No, equations 2 and 3 are 
algebraically dependent on 
each other. 

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

y(0) = 3 (5)

y(0) = �3 (6)

ẋ = �x+
p
10� x

2 (7)

ẋ = �x+ y � z (8)

z = x

2 + y

2 (9)

z = x+ x ⇤ y (10)

(11)

ẋ = f(x, y, t) (12)

0 = g(x, y, t) (13)

1

This is called the semi-explicit form of an DAE 

2.   Solve differentiated variables 

. 
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DAE Index 
Definition: The index of an DAE is the minimum number of times that all or 
part of the DAE must be differentiated with respect to t in order to determine 
x’ as a continuous function of x and t. 

(Brenan, Campbell, Petzold, 1989) 

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

y(0) = 3 (5)

y(0) = �3 (6)

ẋ = �x+
p
10� x

2 (7)

ẋ = �x+ y � z (8)

z = x

2 + y

2 (9)

z = x+ x ⇤ y (10)

(11)

1

1 DAE Index

ẋ = �x (1)

x(0) = 1 (2)

ẋ = �x+ y (3)

x

2 + y

2 = 10 (4)

1

Our first example was an index 1 DAE.  
 
No differentiation is need to obtain an ODE. 
An ODE has index 0. 

Example two has an algebraic loop, and 
the two algebraic equations are non-
singular. Example of an index 1 DAE. 

We will soon see examples where a system of equation is 
singular. These may be higher-index DAEs (index > 1). 

Note that you can differentiate parts of the equation 
system once (equations (2) and (3)) to obtain an 
ODE. (Not recommended for numerical stability)  

. 

This definition is called the differential index.  
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Drive Shaft Example 1.1 Modeling and Simulation 3

Figure 1.1: A simple model of a rotational mechanical system representing a drive
shaft with a torque.

where x ∈ Rn is the unknown state vector to be solved for, u ∈ Rm the vector of input
signals, and t the independent variable representing time.

An ODE has a general solution, but when studying a model for a specific application
it is desirable to find a unique solution by also giving the initial conditions. The ODE
together with the initial conditions is an initial value problem:

ẋ = f
(

t, x, u) (1.3)
x(t0) = x0 (1.4)

where x0 ∈ Rn is the initial conditions. Note that the dimensions of the vectors x0 and x
are equal.

1.1.1 Example of a Mechanical System

Let us consider a simplified example of a drive shaft for a truck, i.e., the part of a power-
train used for transmitting the rotational torque between axles. A graphical model of the
shaft is outlined in Figure 1.1 and an example where such a shaft could be used in reality
is illustrated in Figure 1.2. The model represents two inertias connected in series, with a
spring in between. To the left, a torque is driving the shaft.

Because the inertial bodies are rigid, the angle ϕ (rad) is the same on each side of
the body, here defined as ϕ1 and ϕ2. However, the torque τ (N m) is different between
each component. For example τ2 is affected both by the driving torque to the left and the
conserved energy in the spring.

We define the angular velocities ω1 (rad/s) and ω2 together with the equations ω1 =
ϕ̇1 and ω2 = ϕ̇2. By using Newton’s law of motion in the rotational domain, we know
that the angular acceleration ω̇ (rad/s2) is proportional to the torque of the shaft, where
the proportionality constant is the inertia J (N m/s2). Hence, we have the equations
J1 · ω̇1 = τ1 + τ2 and J2 · ω̇2 = τ3 + τ4 respectively. Because the right hand side of the
shaft is not connected, we have τ4 = 0. The torque affected by the spring is proportional
to the angular differenceϕ2−ϕ1, where the proportional constant c (N m/rad) is called the
spring constant. This adds the equation τ2 = c · (ϕ2 −ϕ1) to the system of equations. We
also know that the spring torque is the same on each side of the spring, but with different
sign, i.e., τ2 = −τ3. Finally, we also have the input torque u giving u = τ1.

We now have a system of equations with 8 equations and 8 unknowns (ϕ1, ϕ2, ω1,
ω2, τ1, τ2, τ3, τ4), where four unknowns appears differentiated (ϕ̇1, ϕ̇2, ω̇1, ω̇2).

4 1 Introduction

Figure 1.2: The figure shows Tandem axles RST 2370 A B-Ride Bogie (Volvo
Trucks). The shaft between the axles is an example of a rotating shaft that is part
of a powertrain for transmission of the torque. Used with permission.

We can rewrite our example as follows:

ϕ̇1 = ω1 (1.5)
ϕ̇2 = ω2 (1.6)

ω̇1 =
τ1 + τ2

J1

(1.7)

ω̇2 =
τ3 + τ4

J2

(1.8)

τ1 = u (1.9)
τ2 = c · (ϕ2 − ϕ1) (1.10)
τ3 = −c · (ϕ2 − ϕ1) (1.11)
τ4 = 0 (1.12)

Here the last four equations (1.9-1.12) are called algebraic equations.
Recall the definition of an ODE (1.1) where all variables except the independent vari-

able appears differentiated. In the mechanical example above, variables τ1, τ2, τ3, τ4

do not appear differentiated. These variables are called algebraic meaning that they are
free from derivatives. Hence, our system of equations is not an ODE, but a system of

Is this an DAE?"
Variables: 
Appearing differentiated: 
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7 Shaft example

7.1 Incidence Matrix and Adjacency List

0

BBBBBBBBBB@

!̇1 !̇2
˙

�1
˙

�2 ⌧1 ⌧2 ⌧3 ⌧4

f1 0 0 1 0 0 0 0 0

f2 0 0 0 1 0 0 0 0

f3 1 0 0 0 1 1 0 0

f4 0 1 0 0 0 0 1 1

f5 0 0 0 0 1 0 0 0

f6 0 0 0 0 0 1 0 0

f7 0 0 0 0 0 0 1 0

f8 0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

g(f1) = [

˙

�1]

g(f2) = [

˙

�2]

g(f3) = [!̇1, ⌧1, ⌧2]

g(f4) = [!̇2, ⌧3, ⌧4]

g(f5) = [⌧1]

g(f6) = [⌧2]

g(f7) = [⌧3]

g(f8) = [⌧4]

7.2 Assignments

0: [

˙

�1 7! f1]

1: [

˙

�1 7! f1,
˙

�2 7! f2]

2: [!̇1 7! f3,
˙

�1 7! f1,
˙

�2 7! f2]

3: [!̇1 7! f3, !̇2 7! f4,
˙

�1 7! f1,
˙

�2 7! f2]

4: [!̇1 7! f3, !̇2 7! f4,
˙

�1 7! f1,
˙

�2 7! f2, ⌧1 7! f5]

5: [!̇1 7! f3, !̇2 7! f4,
˙

�1 7! f1,
˙

�2 7! f2, ⌧1 7! f5, ⌧2 7! f6]

6: [!̇1 7! f3, !̇2 7! f4,
˙

�1 7! f1,
˙

�2 7! f2, ⌧1 7! f5, ⌧2 7! f6, ⌧3 7! f7]

7: [!̇1 7! f3, !̇2 7! f4,
˙

�1 7! f1,
˙

�2 7! f2, ⌧1 7! f5, ⌧2 7! f6, ⌧3 7! f7, ⌧4 7! f8]

7.3 Equation dependency graph

g(f1) = []

g(f2) = []

g(f3) = []

g(f4) = []

g(f5) = [f3]

g(f6) = [f3]

g(f7) = [f4]

g(f8) = [f4]

9

Matching: Find a unique 
mapping between variables and 
equations."

7.4 BLT sort using Tarjan’s algorithm

sorting order = [7, 6, 5, 4, 3, 2, 1, 0]

component IDs = [7, 6, 5, 4, 3, 2, 1, 0]

0

BBBBBBBBBB@

⌧4 ⌧3 ⌧2 ⌧1 !̇2 !̇1
˙

�2
˙

�1

f8 1 0 0 0 0 0 0 0

f7 0 1 0 0 0 0 0 0

f6 0 0 1 0 0 0 0 0

f5 0 0 0 1 0 0 0 0

f4 1 1 0 0 1 0 0 0

f3 0 0 1 1 0 1 0 0

f2 0 0 0 0 0 0 1 0

f1 0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

10

Sorting: Sort equations 
(permute matrix) "

Incidence matrix. Differentiated variables and the 
algebraic variables are unknown."
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ẋ1

Part I 
DAE Basics David Broman 

dbro@kth.se 

12 

Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

Construct a bipartite graph  

G = (F, V,E)
System of equations 

Example: Matching 

Incidence Matrix 

1 Example 1: Perfect match

1.1 Incidence Matrix and Adjacency List

0

@

ẋ1 ẋ2 y

f1 0 0 1

f2 1 1 1

f3 0 1 0

1

A

f1(y) = 0

f2(ẋ1, ẋ2, y) = 0

f3(ẋ2) = 0

1.2 Assignments

0: [y 7! f1]

1: [ẋ1 7! f2, y 7! f1]

2: [ẋ1 7! f2, ẋ2 7! f3, y 7! f1]

1.3 Equation dependency graph

f1(f2) = 0

f2() = 0

f3(f2) = 0

1.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 0, 1]

component IDs = [2, 1, 0]

0

@

ẋ2 y ẋ1

f3 1 0 0

f1 0 1 0

f2 1 1 1

1

A

1

1 Example 1: Perfect match

1.1 Incidence Matrix and Adjacency List

0

@
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2: [ẋ1 7! f2, ẋ2 7! f3, y 7! f1]

1.3 Equation dependency graph

f1(f2) = 0

f2() = 0

f3(f2) = 0

1.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 0, 1]

component IDs = [2, 1, 0]

0

@

ẋ2 y ẋ1

f3 1 0 0

f1 0 1 0

f2 1 1 1

1

A

1

3.15 Output

ẋ = u (1)

ẏ = v (2)

u̇ = � · x (3)

v̇ = � · y � g (4)

x2 + y2 = L (5)

2xẋ+ 2yẏ = 0 (6)

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0 (7)

ẍ = u̇ (8)

ÿ = v̇ (9)

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0

f6(x, ẋ, y, ẏ) = 0

f7(x, ẋ, ẍ, y, ẏ, ÿ) = 0

f8(ẍ, u̇) = 0

f9(ÿ, v̇) = 0

|G.F | = 9 |G.V | = 11

4 Matching

4.1 Example 1

F = {f1, f2, f3}
V = {ẋ1, ẋ2, y}

E = {(f1, y), (f1, u),
(f2, ẋ1), (f2, ẋ2), (f2, y),

(f3, ẋ2)}

9
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4.1 Example 1

F = {f1, f2, f3}
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9f1

f2

f3 y

ẋ2

ẋ1
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Algorithm: Matching 

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x2 + y2 = L

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0

F = {f1, f2, f3, f4, f5}
V = {x, y, u, v, ẋ, ẏ, u̇, v̇,�}

E = {(f1, ẋ), (f1, u),
(f2, ẏ), (f2, v),

(f3, u̇), (f3,�), (f3, x),

(f4, v̇), (f4,�), (f4, y),

(f5, x), (f5, y)}

vmap[v] =

⇢
v0 if dv

dt = v0

nil otherwise

eqmap[f ] =

⇢
f 0 if df

dt = f 0

nil otherwise

assign[v] =

⇢
f if f matches v
nil otherwise

Construct a bipartite graph G = (F, V,E), where

4

Assigns variables to equations 

HyDAE : an E�cient Hybrid Higher Index

Di↵erential Algebraic Equation Solver

David Broman

April 29, 2013

1 Introduction

2 Algorithms

Let G = (F, V,E) be a bipartiet graph, where F is the set of vertices repre-
senting equations and V the set of vertices representing variables. Let assign
be a mutable mapping between variable vertices and equation vertices. Set C
represents colored vertices and f 2 F is the start equation node. The matching
algorithm Match-Equation returns true if a match is found, else false.

Match(G)
1 assign  ;
2 for each f 2 G.F
3 do C  ;
4 if not Match-Equation(G, f, C, assign, ;)
5 then return (false, assign)
6 return (true, assign)

Match-Equation(G, f, C, assign, vmap)
1 C  C [ {f}
2 if there exits a v 2 G.V such that (f, v) 2 G.E
3 and assign[v] = nil and vmap[v] = nil

4 then assign[v] f
5 return true

6 else for each v where (f, v) 2 G.E and v /2 C
7 and vmap[v] = nil

8 do C  C [ {v}
9 if Match-Equation(G, assign[v], C, assign, vmap)

10 then assign[v] f
11 return true

12 return false

1
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1

Color visited vertices 

Underline means call  
by reference."

C ✓ G.F [G.V

5 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

6 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

7 Conclusions
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Exercise!
Do each step of the algorithms 
and keep track of C and assign."
Case A: For f2, use x1.  

Case B: For f2, first use x2 
(Reassignment of x2)  

C ✓ G.F [G.V

assign = {y 7! f1, ẋ1 7! f2, ẋ2 7! f3}
C = {f1, f2, f3}

Step 1:
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C = {f1, f2}

Step 2:
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5 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

6 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
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Pantelides 
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Dummy Derivatives 

System of equations 

Example: Matching 

Incidence Matrix 

1 Example 1: Perfect match

1.1 Incidence Matrix and Adjacency List

0

@

ẋ1 ẋ2 y

f1 0 0 1

f2 1 1 1

f3 0 1 0

1

A

f1(y) = 0

f2(ẋ1, ẋ2, y) = 0

f3(ẋ2) = 0

1.2 Assignments

0: [y 7! f1]

1: [ẋ1 7! f2, y 7! f1]

2: [ẋ1 7! f2, ẋ2 7! f3, y 7! f1]

1.3 Equation dependency graph

f1(f2) = 0

f2() = 0

f3(f2) = 0

1.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 0, 1]

component IDs = [2, 1, 0]

0

@

ẋ2 y ẋ1

f3 1 0 0

f1 0 1 0

f2 1 1 1

1

A

1

1 Example 1: Perfect match
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@
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f1 0 0 1
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1

A
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f1(f2) = 0

f2() = 0

f3(f2) = 0

1.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 0, 1]

component IDs = [2, 1, 0]

0

@

ẋ2 y ẋ1

f3 1 0 0

f1 0 1 0

f2 1 1 1

1

A

1

f1

f2

f3 y

ẋ2

ẋ1

We may now permute the matrix 

1 Example 1: Perfect match

1.1 Incidence Matrix and Adjacency List

0

@

ẋ1 ẋ2 y

f1 0 0 1

f2 1 1 1

f3 0 1 0

1

A
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0: [y 7! f1]

1: [ẋ1 7! f2, y 7! f1]

2: [ẋ1 7! f2, ẋ2 7! f3, y 7! f1]
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f1(f2) = 0

f2() = 0

f3(f2) = 0

1.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 0, 1]

component IDs = [2, 1, 0]

0

@

ẋ2 y ẋ1

f3 1 0 0

f1 0 1 0

f2 1 1 1

1

A

1

The matching problem 
solves the problem of 
finding a permutation such 
that the matrix has a 
nonzero diagonal. Also 
called maximum traversal."
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Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

Sorting into Lower Triangular Form 
5 Example: Lower Triangular Form.

5.1 Incidence Matrix and Adjacency List

0

BBBBBBBB@

x1 x2 x3 x4 x5 x6 x7

f1 0 0 1 0 0 1 0

f2 1 1 0 0 1 1 0

f3 0 0 0 1 1 1 0

f4 0 1 0 0 0 0 0

f5 0 0 1 0 1 0 0

f6 0 1 0 0 0 1 0

f7 0 1 1 0 0 0 1

1

CCCCCCCCA

f1(x3, x6) = 0

f2(x1, x2, x5, x6) = 0

f3(x4, x5, x6) = 0

f4(x2) = 0

f5(x3, x5) = 0

f6(x2, x6) = 0

f7(x2, x3, x7) = 0

5.2 Assignments

0: [x3 7! f1]

1: [x1 7! f2, x3 7! f1]

2: [x1 7! f2, x3 7! f1, x4 7! f3]

3: [x1 7! f2, x2 7! f4, x3 7! f1, x4 7! f3]

4: [x1 7! f2, x2 7! f4, x3 7! f1, x4 7! f3, x5 7! f5]

5: [x1 7! f2, x2 7! f4, x3 7! f1, x4 7! f3, x5 7! f5, x6 7! f6]

6: [x1 7! f2, x2 7! f4, x3 7! f1, x4 7! f3, x5 7! f5, x6 7! f6, x7 7! f7]

5.3 Equation dependency graph

f1(f5, f7) = 0

f2() = 0

f3() = 0

f4(f2, f6, f7) = 0

f5(f2, f3) = 0

f6(f1, f2, f3) = 0

f7() = 0

5.4 BLT sort using Tarjan’s algorithm

sorting order = [3, 5, 0, 6, 4, 2, 1]

5

component IDs = [6, 5, 4, 3, 2, 1, 0]

0

BBBBBBBB@

x2 x6 x3 x7 x5 x4 x1

f4 1 0 0 0 0 0 0

f6 1 1 0 0 0 0 0

f1 0 1 1 0 0 0 0

f7 1 0 1 1 0 0 0

f5 0 0 1 0 1 0 0

f3 0 1 0 0 1 1 0

f2 1 1 0 0 1 0 1

1

CCCCCCCCA

6

Sorting (permutation of Matrix) into Lower 
Triangular Matrix Form 

But, we cannot always 
permute the matrix into 
lower triangular form…"

We now have a causal 
form; solving the equation 
system is straight forward."

Unsorted Matrix 

Find a matching "
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Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

Sorting into  
Block Lower Triangular (BLT) Form 

Sorting (permutation of Matrix) into 
Block Lower Triangular (BLT ) Form 

We have identified an 
algebraic loop."

6 Example: BLT.

6.1 Incidence Matrix and Adjacency List

0

BBBBBBBB@

x1 x2 x3 x4 x5 x6 x7

f1 0 0 1 1 0 1 0

f2 1 1 0 0 1 1 0

f3 0 0 0 1 1 0 0

f4 0 1 0 0 0 0 0

f5 1 0 1 0 1 0 0

f6 0 1 0 0 0 1 0

f7 0 0 1 0 0 0 1

1

CCCCCCCCA

f1(x3, x4, x6) = 0

f2(x1, x2, x5, x6) = 0

f3(x4, x5) = 0

f4(x2) = 0

f5(x1, x3, x5) = 0

f6(x2, x6) = 0

f7(x3, x7) = 0

6.2 Assignments

0: [x3 7! f1]

1: [x1 7! f2, x3 7! f1]

2: [x1 7! f2, x3 7! f1, x4 7! f3]

3: [x1 7! f2, x2 7! f4, x3 7! f1, x4 7! f3]

4: [x1 7! f2, x2 7! f4, x3 7! f1, x4 7! f3, x5 7! f5]

5: [x1 7! f2, x2 7! f4, x3 7! f1, x4 7! f3, x5 7! f5, x6 7! f6]

6: [x1 7! f2, x2 7! f4, x3 7! f1, x4 7! f3, x5 7! f5, x6 7! f6, x7 7! f7]

6.3 Equation dependency graph

f1(f5, f7) = 0

f2(f5) = 0

f3(f1) = 0

f4(f2, f6) = 0

f5(f2, f3) = 0

f6(f1, f2) = 0

f7() = 0

6.4 BLT sort using Tarjan’s algorithm

sorting order = [3, 5, 0, 4, 1, 2, 6]

7

Another unsorted Matrix  

component IDs = [3, 2, 1, 1, 1, 1, 0]

0

BBBBBBBB@

x2 x6 x3 x5 x1 x4 x7

f4 1 0 0 0 0 0 0

f6 1 1 0 0 0 0 0

f1 0 1 1 0 0 1 0

f5 0 0 1 1 1 0 0

f2 1 1 0 1 1 0 0

f3 0 0 0 1 0 1 0

f7 0 0 1 0 0 0 1

1

CCCCCCCCA

8

At each time step, the algebraic 
loops may be solved using 
Guassian elimination (if linear) or a 
Newton’s method (if nonlinear)."

In part III we discuss a  
BLT sorting algorithm"
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Example: Pendulum  
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Figure 2: (a) Diagram of a simple pendulum. (b) Plot of the simulated pendulum.

creates an instance of the model. For example, expression Pendulum(5,3,45*pi/180)
represents a mathematical model instance with the mass 5kg, string length 2m, and a
start angle of 45 degrees. Variable pi is bound outside the function to an approximation
of ⇡.

Line two in the code listing defines the new unknowns x, y, and T. We use the term
unknown to describe a variable in an equation system. Internally, in the host language,
these unknowns are represented as typed symbols. For example, three fresh symbols of
symbolic type Real are created when line two is evaluated. As usual, we use the term
variable for functional variables that can only be bound to a value once.

From a modeling point of view, the rest should be self explanatory. We pause to
note the direct correspondence between the equations (1)-(3), the initial equations (4)-
(5), and the Modelyze code (lines 3-8).

2.2. Seamless Integration - Removing End User Annotation Burden
In the Pendulum example, it is not obvious which parts of the syntax are from the host
language and which are from the DSEL. This is intentional and is what we call seamless
integration between the host language and the DSEL. In the Pendulum example, lines
1-2 are part of the host language, whereas lines 3-8 are defined by the DSL. Equations,
derivatives, and initial values are not part of Modelyze, whereas function abstraction
(line 1) and symbol creation (line 2) are part of the host language.

The notion of symbolic expression is an old concept, introduced in LISP by Mc-
Carty as S-expressions (symbolic expressions). Quasi-quoting is a classic way of mix-
ing symbolic expressions with program code. For example, in Common Lisp [26], a
quasi-quoted expression ‘(+ 1 ,a) means that the expression should be treated as
data (the quotation indicated by ‘) together with an unquote (or anti-quote) ,a forming
a template so that variable a can be substituted at runtime. Other languages support
quasi-quoting with different notation. For example, in MetaML [30], angle brackets
(< >) are used for quotation and tilde (˜) is used for anti-quoting.

6

Pendulum in Cartesian  
coordinate system 

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x

2 + y

2 = L

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2 + yˆ2 = lˆ2;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,
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transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)
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respectively.
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is needed to constrain the ball so that it follows a trajectory in which the string is taut.
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s
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initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2 + yˆ2 = lˆ2;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

C ✓ G.F [G.V

assign = {y 7! f1, ẋ1 7! f2, ẋ2 7! f3}
C = {f1, f2, f3}

Step 1:

assign = {y 7! f1, ẋ2 7! f2}
C = {f1, f2}

Step 2:

assign = {y 7! f1, ẋ1 7! f2, ẋ1 7! f3}
C = {f1, f2, f3, ẋ2, }

5 Matching

5.1 Example

F = {f1, f2, f3, f4, f5, f6}
V = {ẋ1, ẋ2, ẋ3, ẋ4, y1, y2}

D = (V,E)

V = {f1, f2, f3, f4, f5, f6}
E = {f2 7! f4, f3 7! f2, f3 7! f5, f4 7! f2, f5 7! f1,

f5 7! f2, f5 7! f6, f6 7! f1, f6 7! f3, f6, 7! f4}

O = [{f3, f5, f6}, {f2, f4}, {f1}]

6 Pendulum Revisited

�T/l = �

m = 1

l2 = L

10

Simplified  
using 

6 Pendulum Revisited

�T/l = �

m = 1

l2 = L

ẍ = � · x
ÿ = � · y � g

x2 + y2 = L

7 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

8 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

9 Conclusions
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Simplified 

Rewritten in first order 

Is this an DAE? 

Can we solve it? 
Can we create BLT? 

11 Exercise - di↵erentiated with Pantelides.

11.1 Incidence Matrix and Adjacency List

0

BBBB@

ẋ ẏ u̇ v̇ �

f1 1 0 0 0 0

f2 0 1 0 0 0

f3 0 0 1 0 1
f4 0 0 0 1 1
f5 0 0 0 0 0

1

CCCCA

f1(ẋ) = 0

f2(ẏ) = 0

f3(u̇,�) = 0

f4(v̇,�) = 0

f5() = 0

11.2 Assignments

0: assign = {ẋ 7! f1}
1: assign = {ẋ 7! f1, ẏ 7! f2}
2: assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3}
3: assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}
4: Unsuccessful match!

11.3 Equation dependency graph

N/A

11.4 BLT sort using Tarjan’s algorithm

N/A

16

Incidence Matrix 

No, we cannot find a matching (see f5). 
This is a higher-index problem (index > 1). IDEA: Symbolically 

differentiate equations to 
get derivatives. How can we determine which equations to differentiate? Solution: 

Pantelides Algorithm (other methods exist, such as Pryce’s method) 
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BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

How the algorithms fit together (simplified)  

Match 

BLT 
Sorting 

Pantelides 

Numerically solve 
Index-1 DAE yes 

no 

reduced index  
(symbolic differentiation) 

Sorted 
BLT-form 

structurally 
singular 

To avoid numerical 
drifting problem, 
Pantelides should be 
combined with the 
dummy derivative 
method. 

Note that this is a simplified view: 
In a real implementation, these 
algorithms are sometimes combined. 
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Part C 
 

BLT Sorting 
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Part IV 
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Part V 
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Algorithm: BLT Sort 

BLT(G)
1 (match, assign) Match(G)
2 if not match
3 then return error “Singular”
4
5 D.V  G.F
6 D.E  ;
7 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
8 do D.E  D.E [ {(assign[v], f)}
9

10 makeempty(O)
11 makeempty(S)
12 i 0
13 lowlink ;
14 number ;
15 for each v 2 D.V
16 do if number[v] = nil

17 then StrongConnect(v,D, S, i, lowlink,number, O)
18 return O

Equations-Dependencies(G, assign)
1 D.V  G.F
2 D.E  ;
3 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
4 do D.E  D.E [ {(assign[v], f)}
5 return D

StrongConnect(v,D, S, i, lowlink,number, O)
1 i i+ 1
2 lowlink[v] i
3 number[v] i
4 push(S, v)
5 for each w 2 D.V where (v, w) 2 D.E
6 do if number[w] = nil

7 then StrongConnect(w,D, S, i, lowlink,number, O)
8 lowlink[v] min(lowlink[v], lowlink[w])
9 else if w 2 S and number[w] < number[v]

10 then lowlink[v] min(lowlink[v],number[w])
11 if lowlink[v] = number[v]
12 then eqset ;
13 while not isempty(S) and number[top(S)] � number[v]
14 do eqset eqset [ {pop(S)}
15 push(O, eqset)
16 return

3

Output: a stack of sets of equation vertices, where each set 
represents an equation block in the BLT matrix."

Input: a bipartite graph G"
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Algorithm: BLT Sort 
BLT(G)
1 (match, assign) Match(G)
2 if not match
3 then return error “Singular”
4
5 D.V  G.F
6 D.E  ;
7 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
8 do D.E  D.E [ {(assign[v], f)}
9

10 makeempty(O)
11 makeempty(S)
12 i 0
13 lowlink ;
14 number ;
15 for each v 2 D.V
16 do if number[v] = nil

17 then StrongConnect(v,D, S, i, lowlink,number, O)
18 return O

Equations-Dependencies(G, assign)
1 D.V  G.F
2 D.E  ;
3 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
4 do D.E  D.E [ {(assign[v], f)}
5 return D

StrongConnect(v,D, S, i, lowlink,number, O)
1 i i+ 1
2 lowlink[v] i
3 number[v] i
4 push(S, v)
5 for each w 2 D.V where (v, w) 2 D.E
6 do if number[w] = nil

7 then StrongConnect(w,D, S, i, lowlink,number, O)
8 lowlink[v] min(lowlink[v], lowlink[w])
9 else if w 2 S and number[w] < number[v]

10 then lowlink[v] min(lowlink[v],number[w])
11 if lowlink[v] = number[v]
12 then eqset ;
13 while not isempty(S) and number[top(S)] � number[v]
14 do eqset eqset [ {pop(S)}
15 push(O, eqset)
16 return

3

Step 1  
Find matching"

Step 2  
Construct equation 
dependency graph"

Step 3  
Sort into blocks of 
equations using   
Tarjan’s strongly  
connected component 
algorithm"

Output: a stack of sets of equation vertices, where each set 
represents an equation block in the BLT matrix."

Input: a bipartite graph G"
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Example: BLT Sort 7 Example: Tarjan.

7.1 Incidence Matrix and Adjacency List

0

BBBBBB@

ẋ1 ẋ2 ẋ3 ẋ4 y1 y2

f1 0 0 1 1 0 1
f2 1 1 0 0 1 1
f3 0 1 1 0 0 0

f4 1 0 1 0 1 0

f5 0 1 0 0 0 1
f6 0 0 1 0 0 1

1

CCCCCCA

f1(ẋ3, ẋ4, y2) = 0

f2(ẋ1, ẋ2, y1, y2) = 0

f3(ẋ2, ẋ3) = 0

f4(ẋ1, ẋ3, y1) = 0

f5(ẋ2, y2) = 0

f6(ẋ3, y2) = 0

7.2 Assignments

0: assign = {ẋ3 7! f1}
1: assign = {ẋ1 7! f2, ẋ3 7! f1}
2: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1}
3: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4}
4: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4, y2 7! f5}
5: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f6, ẋ4 7! f1, y1 7! f4, y2 7! f5}

7.3 Equation dependency graph

f1() = 0

f2(f4) = 0

f3(f2, f5) = 0

f4(f2) = 0

f5(f1, f2, f6) = 0

f6(f1, f3, f4) = 0

7.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 4, 5, 1, 3, 0]

component IDs = [2, 2, 2, 1, 1, 0]

9

C ✓ G.F [G.V

assign = {y 7! f1, ẋ1 7! f2, ẋ2 7! f3}
C = {f1, f2, f3}

Step 1:

assign = {y 7! f1, ẋ2 7! f2}
C = {f1, f2}

Step 2:

assign = {y 7! f1, ẋ1 7! f2, ẋ1 7! f3}
C = {f1, f2, f3, ẋ2, }

5 Matching

5.1 Example

F = {f1, f2, f3, f4, f5, f6}
V = {ẋ1, ẋ2, ẋ3, ẋ4, y1, y2}

6 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

7 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

10

G = (F, V,E)

BLT(G)
1 (match, assign) Match(G)
2 if not match
3 then return error “Singular”
4
5 D.V  G.F
6 D.E  ;
7 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
8 do D.E  D.E [ {(assign[v], f)}
9

10 makeempty(O)
11 makeempty(S)
12 i 0
13 lowlink ;
14 number ;
15 for each v 2 D.V
16 do if number[v] = nil

17 then StrongConnect(v,D, S, i, lowlink,number, O)
18 return O

Equations-Dependencies(G, assign)
1 D.V  G.F
2 D.E  ;
3 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
4 do D.E  D.E [ {(assign[v], f)}
5 return D

StrongConnect(v,D, S, i, lowlink,number, O)
1 i i+ 1
2 lowlink[v] i
3 number[v] i
4 push(S, v)
5 for each w 2 D.V where (v, w) 2 D.E
6 do if number[w] = nil

7 then StrongConnect(w,D, S, i, lowlink,number, O)
8 lowlink[v] min(lowlink[v], lowlink[w])
9 else if w 2 S and number[w] < number[v]

10 then lowlink[v] min(lowlink[v],number[w])
11 if lowlink[v] = number[v]
12 then eqset ;
13 while not isempty(S) and number[top(S)] � number[v]
14 do eqset eqset [ {pop(S)}
15 push(O, eqset)
16 return

3

In Part 1 of BLT - matching 

7 Example: Tarjan.

7.1 Incidence Matrix and Adjacency List

0

BBBBBB@

ẋ1 ẋ2 ẋ3 ẋ4 y1 y2

f1 0 0 1 1 0 1
f2 1 1 0 0 1 1
f3 0 1 1 0 0 0

f4 1 0 1 0 1 0

f5 0 1 0 0 0 1
f6 0 0 1 0 0 1

1

CCCCCCA

f1(ẋ3, ẋ4, y2) = 0

f2(ẋ1, ẋ2, y1, y2) = 0

f3(ẋ2, ẋ3) = 0

f4(ẋ1, ẋ3, y1) = 0

f5(ẋ2, y2) = 0

f6(ẋ3, y2) = 0

7.2 Assignments

0: assign = {ẋ3 7! f1}
1: assign = {ẋ1 7! f2, ẋ3 7! f1}
2: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1}
3: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4}
4: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4, y2 7! f5}
5: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f6, ẋ4 7! f1, y1 7! f4, y2 7! f5}

7.3 Equation dependency graph

f1() = 0

f2(f4) = 0

f3(f2, f5) = 0

f4(f2) = 0

f5(f1, f2, f6) = 0

f6(f1, f3, f4) = 0

7.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 4, 5, 1, 3, 0]

component IDs = [2, 2, 2, 1, 1, 0]

9

Returns TRUE (steps omitted) with assignment 
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Algorithm: BLT Sort 
BLT(G)
1 (match, assign) Match(G)
2 if not match
3 then return error “Singular”
4
5 D.V  G.F
6 D.E  ;
7 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
8 do D.E  D.E [ {(assign[v], f)}
9

10 makeempty(O)
11 makeempty(S)
12 i 0
13 lowlink ;
14 number ;
15 for each v 2 D.V
16 do if number[v] = nil

17 then StrongConnect(v,D, S, i, lowlink,number, O)
18 return O

Equations-Dependencies(G, assign)
1 D.V  G.F
2 D.E  ;
3 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
4 do D.E  D.E [ {(assign[v], f)}
5 return D

StrongConnect(v,D, S, i, lowlink,number, O)
1 i i+ 1
2 lowlink[v] i
3 number[v] i
4 push(S, v)
5 for each w 2 D.V where (v, w) 2 D.E
6 do if number[w] = nil

7 then StrongConnect(w,D, S, i, lowlink,number, O)
8 lowlink[v] min(lowlink[v], lowlink[w])
9 else if w 2 S and number[w] < number[v]

10 then lowlink[v] min(lowlink[v],number[w])
11 if lowlink[v] = number[v]
12 then eqset ;
13 while not isempty(S) and number[top(S)] � number[v]
14 do eqset eqset [ {pop(S)}
15 push(O, eqset)
16 return

3

Step 2  
Construct equation 
dependency graph"

Output: a stack of sets of equation vertices, where each set 
represents an equation block in the BLT matrix."

Input: a bipartite graph G"
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Example: BLT Sort 
7 Example: Tarjan.

7.1 Incidence Matrix and Adjacency List

0

BBBBBB@

ẋ1 ẋ2 ẋ3 ẋ4 y1 y2

f1 0 0 1 1 0 1
f2 1 1 0 0 1 1
f3 0 1 1 0 0 0

f4 1 0 1 0 1 0

f5 0 1 0 0 0 1
f6 0 0 1 0 0 1

1

CCCCCCA

f1(ẋ3, ẋ4, y2) = 0

f2(ẋ1, ẋ2, y1, y2) = 0

f3(ẋ2, ẋ3) = 0

f4(ẋ1, ẋ3, y1) = 0

f5(ẋ2, y2) = 0

f6(ẋ3, y2) = 0

7.2 Assignments

0: assign = {ẋ3 7! f1}
1: assign = {ẋ1 7! f2, ẋ3 7! f1}
2: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1}
3: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4}
4: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4, y2 7! f5}
5: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f6, ẋ4 7! f1, y1 7! f4, y2 7! f5}

7.3 Equation dependency graph

f1() = 0

f2(f4) = 0

f3(f2, f5) = 0

f4(f2) = 0

f5(f1, f2, f6) = 0

f6(f1, f3, f4) = 0

7.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 4, 5, 1, 3, 0]

component IDs = [2, 2, 2, 1, 1, 0]

9

C ✓ G.F [G.V

assign = {y 7! f1, ẋ1 7! f2, ẋ2 7! f3}
C = {f1, f2, f3}

Step 1:

assign = {y 7! f1, ẋ2 7! f2}
C = {f1, f2}

Step 2:

assign = {y 7! f1, ẋ1 7! f2, ẋ1 7! f3}
C = {f1, f2, f3, ẋ2, }

5 Matching

5.1 Example

F = {f1, f2, f3, f4, f5, f6}
V = {ẋ1, ẋ2, ẋ3, ẋ4, y1, y2}

6 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

7 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

10

G = (F, V,E)

In Part 2 of BLT – construct equation  
dependency graph (digraph)   

7 Example: Tarjan.

7.1 Incidence Matrix and Adjacency List

0

BBBBBB@

ẋ1 ẋ2 ẋ3 ẋ4 y1 y2

f1 0 0 1 1 0 1
f2 1 1 0 0 1 1
f3 0 1 1 0 0 0

f4 1 0 1 0 1 0

f5 0 1 0 0 0 1
f6 0 0 1 0 0 1

1

CCCCCCA

f1(ẋ3, ẋ4, y2) = 0

f2(ẋ1, ẋ2, y1, y2) = 0

f3(ẋ2, ẋ3) = 0

f4(ẋ1, ẋ3, y1) = 0

f5(ẋ2, y2) = 0

f6(ẋ3, y2) = 0

7.2 Assignments

0: assign = {ẋ3 7! f1}
1: assign = {ẋ1 7! f2, ẋ3 7! f1}
2: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1}
3: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4}
4: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4, y2 7! f5}
5: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f6, ẋ4 7! f1, y1 7! f4, y2 7! f5}

7.3 Equation dependency graph

f1() = 0

f2(f4) = 0

f3(f2, f5) = 0

f4(f2) = 0

f5(f1, f2, f6) = 0

f6(f1, f3, f4) = 0

7.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 4, 5, 1, 3, 0]

component IDs = [2, 2, 2, 1, 1, 0]

9

BLT(G)
1 (match, assign) Match(G)
2 if not match
3 then return error “Singular”
4
5 D.V  G.F
6 D.E  ;
7 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
8 do D.E  D.E [ {(assign[v], f)}
9

10 makeempty(O)
11 makeempty(S)
12 i 0
13 lowlink ;
14 number ;
15 for each v 2 D.V
16 do if number[v] = nil

17 then StrongConnect(v,D, S, i, lowlink,number, O)
18 return O

Equations-Dependencies(G, assign)
1 D.V  G.F
2 D.E  ;
3 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
4 do D.E  D.E [ {(assign[v], f)}
5 return D

StrongConnect(v,D, S, i, lowlink,number, O)
1 i i+ 1
2 lowlink[v] i
3 number[v] i
4 push(S, v)
5 for each w 2 D.V where (v, w) 2 D.E
6 do if number[w] = nil

7 then StrongConnect(w,D, S, i, lowlink,number, O)
8 lowlink[v] min(lowlink[v], lowlink[w])
9 else if w 2 S and number[w] < number[v]

10 then lowlink[v] min(lowlink[v],number[w])
11 if lowlink[v] = number[v]
12 then eqset ;
13 while not isempty(S) and number[top(S)] � number[v]
14 do eqset eqset [ {pop(S)}
15 push(O, eqset)
16 return

3

Exercise  
Create D graphically"

f1

f2

f3

f4
f5

f6

C ✓ G.F [G.V

assign = {y 7! f1, ẋ1 7! f2, ẋ2 7! f3}
C = {f1, f2, f3}

Step 1:

assign = {y 7! f1, ẋ2 7! f2}
C = {f1, f2}

Step 2:

assign = {y 7! f1, ẋ1 7! f2, ẋ1 7! f3}
C = {f1, f2, f3, ẋ2, }

5 Matching

5.1 Example

F = {f1, f2, f3, f4, f5, f6}
V = {ẋ1, ẋ2, ẋ3, ẋ4, y1, y2}

D = (V,E)

V = {f1, f2, f3, f4, f5, f6}
E = {f2 7! f4, f3 7! f2, f3 7! f5, f4 7! f2, f5 7! f1,

f5 7! f2, f5 7! f6, f6 7! f1, f6 7! f3, f6, 7! f4}

6 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

10

Matching tells us that x’3 is 
supposed to be solved using f6"

When solving x’4, variables  x’3 and y2 need to be 
known. Hence, f1 is dependent on f5 and f6.  "
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Algorithm: BLT Sort 
BLT(G)
1 (match, assign) Match(G)
2 if not match
3 then return error “Singular”
4
5 D.V  G.F
6 D.E  ;
7 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
8 do D.E  D.E [ {(assign[v], f)}
9

10 makeempty(O)
11 makeempty(S)
12 i 0
13 lowlink ;
14 number ;
15 for each v 2 D.V
16 do if number[v] = nil

17 then StrongConnect(v,D, S, i, lowlink,number, O)
18 return O

Equations-Dependencies(G, assign)
1 D.V  G.F
2 D.E  ;
3 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
4 do D.E  D.E [ {(assign[v], f)}
5 return D

StrongConnect(v,D, S, i, lowlink,number, O)
1 i i+ 1
2 lowlink[v] i
3 number[v] i
4 push(S, v)
5 for each w 2 D.V where (v, w) 2 D.E
6 do if number[w] = nil

7 then StrongConnect(w,D, S, i, lowlink,number, O)
8 lowlink[v] min(lowlink[v], lowlink[w])
9 else if w 2 S and number[w] < number[v]

10 then lowlink[v] min(lowlink[v],number[w])
11 if lowlink[v] = number[v]
12 then eqset ;
13 while not isempty(S) and number[top(S)] � number[v]
14 do eqset eqset [ {pop(S)}
15 push(O, eqset)
16 return

3

Step 3  
Sort into blocks of 
equations using   
Tarjan’s strongly  
connected component 
algorithm"

Output: a stack of sets of equation vertices, where each set 
represents an equation block in the BLT matrix."

Input: a bipartite graph G"
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Algorithm: StrongConnect (Tarjan) 

BLT(G)
1 (match, assign) Match(G)
2 if not match
3 then return error “Singular”
4
5 D.V  G.F
6 D.E  ;
7 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
8 do D.E  D.E [ {(assign[v], f)}
9

10 makeempty(O)
11 makeempty(S)
12 i 0
13 lowlink ;
14 number ;
15 for each v 2 D.V
16 do if number[v] = nil

17 then StrongConnect(v,D, S, i, lowlink,number, O)
18 return O

Equations-Dependencies(G, assign)
1 D.V  G.F
2 D.E  ;
3 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
4 do D.E  D.E [ {(assign[v], f)}
5 return D

StrongConnect(v,D, S, i, lowlink,number, O)
1 i i+ 1
2 lowlink[v] i
3 number[v] i
4 push(S, v)
5 for each w 2 D.V where (v, w) 2 D.E
6 do if number[w] = nil

7 then StrongConnect(w,D, S, i, lowlink,number, O)
8 lowlink[v] min(lowlink[v], lowlink[w])
9 else if w 2 S and number[w] < number[v]

10 then lowlink[v] min(lowlink[v],number[w])
11 if lowlink[v] = number[v]
12 then eqset ;
13 while not isempty(S) and number[top(S)] � number[v]
14 do eqset eqset [ {pop(S)}
15 push(O, eqset)
16 return

3
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Algorithm: StrongConnect (Tarjan) 

BLT(G)
1 (match, assign) Match(G)
2 if not match
3 then return error “Singular”
4
5 D.V  G.F
6 D.E  ;
7 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
8 do D.E  D.E [ {(assign[v], f)}
9

10 makeempty(O)
11 makeempty(S)
12 i 0
13 lowlink ;
14 number ;
15 for each v 2 D.V
16 do if number[v] = nil

17 then StrongConnect(v,D, S, i, lowlink,number, O)
18 return O

Equations-Dependencies(G, assign)
1 D.V  G.F
2 D.E  ;
3 for each (f, v) 2 G.E where f 2 G.F and assign[v] 6= f
4 do D.E  D.E [ {(assign[v], f)}
5 return D

StrongConnect(v,D, S, i, lowlink,number, O)
1 i i+ 1
2 lowlink[v] i
3 number[v] i
4 push(S, v)
5 for each w 2 D.V where (v, w) 2 D.E
6 do if number[w] = nil

7 then StrongConnect(w,D, S, i, lowlink,number, O)
8 lowlink[v] min(lowlink[v], lowlink[w])
9 else if w 2 S and number[w] < number[v]

10 then lowlink[v] min(lowlink[v],number[w])
11 if lowlink[v] = number[v]
12 then eqset ;
13 while not isempty(S) and number[top(S)] � number[v]
14 do eqset eqset [ {pop(S)}
15 push(O, eqset)
16 return

3

f1

f2

f3

f4
f5

f6

C ✓ G.F [G.V

assign = {y 7! f1, ẋ1 7! f2, ẋ2 7! f3}
C = {f1, f2, f3}

Step 1:

assign = {y 7! f1, ẋ2 7! f2}
C = {f1, f2}

Step 2:

assign = {y 7! f1, ẋ1 7! f2, ẋ1 7! f3}
C = {f1, f2, f3, ẋ2, }

5 Matching

5.1 Example

F = {f1, f2, f3, f4, f5, f6}
V = {ẋ1, ẋ2, ẋ3, ẋ4, y1, y2}

D = (V,E)

V = {f1, f2, f3, f4, f5, f6}
E = {f2 7! f4, f3 7! f2, f3 7! f5, f4 7! f2, f5 7! f1,

f5 7! f2, f5 7! f6, f6 7! f1, f6 7! f3, f6, 7! f4}

O = [{f3, f5, f6}, {f2, f4}, {f1}]

6 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

10

Exercise 
Construct stack O"

Top of the stack is to the left 
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Example: BLT Sort 
7 Example: Tarjan.

7.1 Incidence Matrix and Adjacency List

0

BBBBBB@

ẋ1 ẋ2 ẋ3 ẋ4 y1 y2

f1 0 0 1 1 0 1
f2 1 1 0 0 1 1
f3 0 1 1 0 0 0

f4 1 0 1 0 1 0

f5 0 1 0 0 0 1
f6 0 0 1 0 0 1

1

CCCCCCA

f1(ẋ3, ẋ4, y2) = 0

f2(ẋ1, ẋ2, y1, y2) = 0

f3(ẋ2, ẋ3) = 0

f4(ẋ1, ẋ3, y1) = 0

f5(ẋ2, y2) = 0

f6(ẋ3, y2) = 0

7.2 Assignments

0: assign = {ẋ3 7! f1}
1: assign = {ẋ1 7! f2, ẋ3 7! f1}
2: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1}
3: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4}
4: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4, y2 7! f5}
5: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f6, ẋ4 7! f1, y1 7! f4, y2 7! f5}

7.3 Equation dependency graph

f1() = 0

f2(f4) = 0

f3(f2, f5) = 0

f4(f2) = 0

f5(f1, f2, f6) = 0

f6(f1, f3, f4) = 0

7.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 4, 5, 1, 3, 0]

component IDs = [2, 2, 2, 1, 1, 0]

9

C ✓ G.F [G.V

assign = {y 7! f1, ẋ1 7! f2, ẋ2 7! f3}
C = {f1, f2, f3}

Step 1:

assign = {y 7! f1, ẋ2 7! f2}
C = {f1, f2}

Step 2:

assign = {y 7! f1, ẋ1 7! f2, ẋ1 7! f3}
C = {f1, f2, f3, ẋ2, }

5 Matching

5.1 Example

F = {f1, f2, f3, f4, f5, f6}
V = {ẋ1, ẋ2, ẋ3, ẋ4, y1, y2}

6 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

7 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

10

G = (F, V,E)

7 Example: Tarjan.

7.1 Incidence Matrix and Adjacency List

0

BBBBBB@

ẋ1 ẋ2 ẋ3 ẋ4 y1 y2

f1 0 0 1 1 0 1
f2 1 1 0 0 1 1
f3 0 1 1 0 0 0

f4 1 0 1 0 1 0

f5 0 1 0 0 0 1
f6 0 0 1 0 0 1

1

CCCCCCA

f1(ẋ3, ẋ4, y2) = 0

f2(ẋ1, ẋ2, y1, y2) = 0

f3(ẋ2, ẋ3) = 0

f4(ẋ1, ẋ3, y1) = 0

f5(ẋ2, y2) = 0

f6(ẋ3, y2) = 0

7.2 Assignments

0: assign = {ẋ3 7! f1}
1: assign = {ẋ1 7! f2, ẋ3 7! f1}
2: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1}
3: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4}
4: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f1, y1 7! f4, y2 7! f5}
5: assign = {ẋ1 7! f2, ẋ2 7! f3, ẋ3 7! f6, ẋ4 7! f1, y1 7! f4, y2 7! f5}

7.3 Equation dependency graph

f1() = 0

f2(f4) = 0

f3(f2, f5) = 0

f4(f2) = 0

f5(f1, f2, f6) = 0

f6(f1, f3, f4) = 0

7.4 BLT sort using Tarjan’s algorithm

sorting order = [2, 4, 5, 1, 3, 0]

component IDs = [2, 2, 2, 1, 1, 0]

9

C ✓ G.F [G.V

assign = {y 7! f1, ẋ1 7! f2, ẋ2 7! f3}
C = {f1, f2, f3}

Step 1:

assign = {y 7! f1, ẋ2 7! f2}
C = {f1, f2}

Step 2:

assign = {y 7! f1, ẋ1 7! f2, ẋ1 7! f3}
C = {f1, f2, f3, ẋ2, }

5 Matching

5.1 Example

F = {f1, f2, f3, f4, f5, f6}
V = {ẋ1, ẋ2, ẋ3, ẋ4, y1, y2}

D = (V,E)

V = {f1, f2, f3, f4, f5, f6}
E = {f2 7! f4, f3 7! f2, f3 7! f5, f4 7! f2, f5 7! f1,

f5 7! f2, f5 7! f6, f6 7! f1, f6 7! f3, f6, 7! f4}

O = [{f3, f5, f6}, {f2, f4}, {f1}]

6 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

10

We can now create the sorted 
BLT matrix  

0

BBBBBB@

ẋ2 y2 ẋ3 ẋ1 y1 ẋ4

f3 1 0 1 0 0 0

f5 1 1 0 0 0 0

f6 0 1 1 0 0 0

f2 1 1 0 1 1 0

f4 0 0 1 1 1 0

f1 0 1 1 0 0 1

1

CCCCCCA

10

Part I 
DAE Basics David Broman 

dbro@kth.se 

30 

Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

Part IV 
 

Pantelides 



Part I 
DAE Basics David Broman 

dbro@kth.se 

31 

Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

Example: Pendulum  

y

x

T

!

mg

T cos(!)

T sin(!)

l

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

y
x

Figure 2: (a) Diagram of a simple pendulum. (b) Plot of the simulated pendulum.

creates an instance of the model. For example, expression Pendulum(5,3,45*pi/180)
represents a mathematical model instance with the mass 5kg, string length 2m, and a
start angle of 45 degrees. Variable pi is bound outside the function to an approximation
of ⇡.

Line two in the code listing defines the new unknowns x, y, and T. We use the term
unknown to describe a variable in an equation system. Internally, in the host language,
these unknowns are represented as typed symbols. For example, three fresh symbols of
symbolic type Real are created when line two is evaluated. As usual, we use the term
variable for functional variables that can only be bound to a value once.

From a modeling point of view, the rest should be self explanatory. We pause to
note the direct correspondence between the equations (1)-(3), the initial equations (4)-
(5), and the Modelyze code (lines 3-8).

2.2. Seamless Integration - Removing End User Annotation Burden
In the Pendulum example, it is not obvious which parts of the syntax are from the host
language and which are from the DSEL. This is intentional and is what we call seamless
integration between the host language and the DSEL. In the Pendulum example, lines
1-2 are part of the host language, whereas lines 3-8 are defined by the DSL. Equations,
derivatives, and initial values are not part of Modelyze, whereas function abstraction
(line 1) and symbol creation (line 2) are part of the host language.

The notion of symbolic expression is an old concept, introduced in LISP by Mc-
Carty as S-expressions (symbolic expressions). Quasi-quoting is a classic way of mix-
ing symbolic expressions with program code. For example, in Common Lisp [26], a
quasi-quoted expression ‘(+ 1 ,a) means that the expression should be treated as
data (the quotation indicated by ‘) together with an unquote (or anti-quote) ,a forming
a template so that variable a can be substituted at runtime. Other languages support
quasi-quoting with different notation. For example, in MetaML [30], angle brackets
(< >) are used for quotation and tilde (˜) is used for anti-quoting.

6

Pendulum in Cartesian  
coordinate system 

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x

2 + y

2 = L

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2 + yˆ2 = lˆ2;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.
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The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are
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s
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The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2 + yˆ2 = lˆ2;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

C ✓ G.F [G.V

assign = {y 7! f1, ẋ1 7! f2, ẋ2 7! f3}
C = {f1, f2, f3}

Step 1:

assign = {y 7! f1, ẋ2 7! f2}
C = {f1, f2}

Step 2:

assign = {y 7! f1, ẋ1 7! f2, ẋ1 7! f3}
C = {f1, f2, f3, ẋ2, }

5 Matching

5.1 Example

F = {f1, f2, f3, f4, f5, f6}
V = {ẋ1, ẋ2, ẋ3, ẋ4, y1, y2}

D = (V,E)

V = {f1, f2, f3, f4, f5, f6}
E = {f2 7! f4, f3 7! f2, f3 7! f5, f4 7! f2, f5 7! f1,

f5 7! f2, f5 7! f6, f6 7! f1, f6 7! f3, f6, 7! f4}

O = [{f3, f5, f6}, {f2, f4}, {f1}]

6 Pendulum Revisited

�T/l = �

m = 1

l2 = L

10

Simplified  
using 

6 Pendulum Revisited

�T/l = �

m = 1

l2 = L

ẍ = � · x
ÿ = � · y � g

x2 + y2 = L

7 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

8 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

9 Conclusions

References

[1] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward. SUNDIALS: Suite of nonlinear and dif-
ferential/algebraic equation solvers. ACM Transactions on Mathematical
Software, 31(3):363–396, 2005.

[2] Iain S. Du↵. On Algorithms for Obtaining a Maximum Transversal. ACM
Transactions on Mathematical Software, 7(3):315–330, 1981.

11

Simplified 

Rewritten in first order 

11 Exercise - di↵erentiated with Pantelides.

11.1 Incidence Matrix and Adjacency List

0

BBBB@

ẋ ẏ u̇ v̇ �

f1 1 0 0 0 0

f2 0 1 0 0 0

f3 0 0 1 0 1
f4 0 0 0 1 1
f5 0 0 0 0 0

1

CCCCA

f1(ẋ) = 0

f2(ẏ) = 0

f3(u̇,�) = 0

f4(v̇,�) = 0

f5() = 0

11.2 Assignments

0: assign = {ẋ 7! f1}
1: assign = {ẋ 7! f1, ẏ 7! f2}
2: assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3}
3: assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}
4: Unsuccessful match!

11.3 Equation dependency graph

N/A

11.4 BLT sort using Tarjan’s algorithm

N/A

16
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Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

Construct a bipartite graph  

G = (F, V,E)

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x

2 + y

2 = L

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0

System of equations 

F = {f1, f2, f3, f4, f5}
V = {x, y, u, v, ẋ, ẏ, u̇, v̇,�}

E = {(f1, ẋ), (f1, u),
(f2, ẏ), (f2, v),

(f3, u̇), (f3,�), (f3, x),

(f4, v̇), (f4,�), (f4, y),

(f5, x), (f5, y)}Note that we include both 
differentiated and not 
differentiated variables. 

Pendulum: Graph Construction 
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Part II 
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Part III 
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Part IV 
Pantelides 

Part V 
Dummy Derivatives 

f1

ẋ

ẏ

u̇

v̇

�

f2

f3

f4
f5

x

y

u

v

Pendulum 

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0
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Part II 
Matching 

Part III 
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Part IV 
Pantelides 

Part V 
Dummy Derivatives 

1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3

Algorithm: Pantelides 

F = {f1, f2, f3, f4, f5}
V = {x, y, u, v, ẋ, ẏ, u̇, v̇,�}

E = {(f1, ẋ), (f1, u),
(f2, ẏ), (f2, v),

(f3, u̇), (f3,�), (f3, x),

(f4, v̇), (f4,�), (f4, y),

(f5, x), (f5, y)}

vmap[v] =

⇢
v0 if dv

dt = v0

nil otherwise

Construct a bipartite graph G = (F, V,E), where

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [7] is an important part of index reduction. We are using
SUNDIALS [1] solver suite for solving the ODE. Du↵ [2] describes the matching
algithm and Du↵ and Reid [3] describes how Tarjan’s algorithm[8] can be used to
sort the system of equations. Mattsson and Söderlind [6] describes the dummy
derivative method. Mattsson et al. [5] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [4].
Van Beek et al. [9] have an interesting article about transitions between

modes in an Hybrid DAE.

6 Conclusions
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5

Mapping variables to 
differentiated variables 

Mapping equations to their 
differentiated version 

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x2 + y2 = L

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0

F = {f1, f2, f3, f4, f5}
V = {x, y, u, v, ẋ, ẏ, u̇, v̇,�}

E = {(f1, ẋ), (f1, u),
(f2, ẏ), (f2, v),

(f3, u̇), (f3,�), (f3, x),

(f4, v̇), (f4,�), (f4, y),

(f5, x), (f5, y)}

vmap[v] =

⇢
v0 if dv

dt = v0

nil otherwise

eqmap[f ] =

⇢
f 0 if df

dt = f 0

nil otherwise

Construct a bipartite graph G = (F, V,E), where

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

4

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x2 + y2 = L

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0

F = {f1, f2, f3, f4, f5}
V = {x, y, u, v, ẋ, ẏ, u̇, v̇,�}

E = {(f1, ẋ), (f1, u),
(f2, ẏ), (f2, v),

(f3, u̇), (f3,�), (f3, x),

(f4, v̇), (f4,�), (f4, y),

(f5, x), (f5, y)}

vmap[v] =

⇢
v0 if dv

dt = v0

nil otherwise

eqmap[f ] =

⇢
f 0 if df

dt = f 0

nil otherwise

assign[v] =

⇢
f if f matches v
nil otherwise

Construct a bipartite graph G = (F, V,E), where

4

Assigns variables to equations 
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Part II 
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Part III 
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Part IV 
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Part V 
Dummy Derivatives 

f1

ẋ

ẏ

u̇

v̇

�

f2

f3

f4
f5

x

y

u

v

Pendulum 
Iterate over each equation f  
(we see later why we introduce f)."

We start with no variable 
to equation assignments."

Preparation for matching algorithm. 
Set all vertices to be uncolored."

Initial state after step 5. 

3.1 Input to Pendulum

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {}

C = {}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.
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References

[1] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward. SUNDIALS: Suite of nonlinear and dif-
ferential/algebraic equation solvers. ACM Transactions on Mathematical
Software, 31(3):363–396, 2005.

[2] Iain S. Du↵. On Algorithms for Obtaining a Maximum Transversal. ACM
Transactions on Mathematical Software, 7(3):315–330, 1981.

5

1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3
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Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3

Algorithm: Pantelides 

Try to find a match for equation f1."
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Part III 
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Part IV 
Pantelides 

Part V 
Dummy Derivatives 

HyDAE : an E�cient Hybrid Higher Index

Di↵erential Algebraic Equation Solver

David Broman

April 29, 2013

1 Introduction

2 Algorithms

Let G = (F, V,E) be a bipartiet graph, where F is the set of vertices repre-
senting equations and V the set of vertices representing variables. Let assign
be a mutable mapping between variable vertices and equation vertices. Set C
represents colored vertices and f 2 F is the start equation node. The matching
algorithm Match-Equation returns true if a match is found, else false.

Match(G)
1 assign  ;
2 for each f 2 G.F
3 do C  ;
4 if not Match-Equation(G, f, C, assign, ;)
5 then return (false, assign)
6 return (true, assign)

Match-Equation(G, f, C, assign, vmap)
1 C  C [ {f}
2 if there exits a v 2 G.V such that (f, v) 2 G.E
3 and assign[v] = nil and vmap[v] = nil

4 then assign[v] f
5 return true

6 else for each v where (f, v) 2 G.E and v /2 C
7 and vmap[v] = nil

8 do C  C [ {v}
9 if Match-Equation(G, assign[v], C, assign, vmap)

10 then assign[v] f
11 return true

12 return false

1

f1

ẋ

ẏ

u̇
v̇

�

f2

f3

f4
f5

x

y

u

v

Pendulum 

State when returning from Match-Equation. 

Note that only    is a valid variable "
because of vmap. We are only 
match for highest derivative."

ẋ

3.2 After first match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1}

C = {f1}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

6 Conclusions
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Part V 
Dummy Derivatives 

1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3

Algorithm: Pantelides 
Function Match-Equation returns TRUE. 
Consequently, we break out of the repeat-until 
loop and proceeds with the next equation."



Part I 
DAE Basics David Broman 

dbro@kth.se 

39 

Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

Same pattern for the first four 
equations."

HyDAE : an E�cient Hybrid Higher Index

Di↵erential Algebraic Equation Solver

David Broman

April 29, 2013

1 Introduction

2 Algorithms

Let G = (F, V,E) be a bipartiet graph, where F is the set of vertices repre-
senting equations and V the set of vertices representing variables. Let assign
be a mutable mapping between variable vertices and equation vertices. Set C
represents colored vertices and f 2 F is the start equation node. The matching
algorithm Match-Equation returns true if a match is found, else false.

Match(G)
1 assign  ;
2 for each f 2 G.F
3 do C  ;
4 if not Match-Equation(G, f, C, assign, ;)
5 then return (false, assign)
6 return (true, assign)

Match-Equation(G, f, C, assign, vmap)
1 C  C [ {f}
2 if there exits a v 2 G.V such that (f, v) 2 G.E
3 and assign[v] = nil and vmap[v] = nil

4 then assign[v] f
5 return true

6 else for each v where (f, v) 2 G.E and v /2 C
7 and vmap[v] = nil

8 do C  C [ {v}
9 if Match-Equation(G, assign[v], C, assign, vmap)

10 then assign[v] f
11 return true

12 return false

1

f1

ẋ

ẏ

u̇

v̇

�

f2

f3

f4
f5

x

y

u

v

Pendulum 

State after matching for  

Note that only the last equation is colored 
because colors are cleared before matching."

3.2 After first match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1}

C = {f1}

3.3 After four matches

f1, f2, f3, f4

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1 ẏ 7! f2 u̇ 7! f3 v̇ 7! f4}

C = {f4}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

5

Matched 4 equations  
(could also have matched lambda)."

3.2 After first match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1}

C = {f1}

3.3 After four matches

f1, f2, f3, f4

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f4}

3.4 After five. No matches

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f5}

3.5 After di↵erantiation of f5

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f5}

e5 : x2 + y2 = L

e6 : 2xẋ+ 2yẏ = 0

5
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HyDAE : an E�cient Hybrid Higher Index

Di↵erential Algebraic Equation Solver

David Broman

April 29, 2013

1 Introduction

2 Algorithms

Let G = (F, V,E) be a bipartiet graph, where F is the set of vertices repre-
senting equations and V the set of vertices representing variables. Let assign
be a mutable mapping between variable vertices and equation vertices. Set C
represents colored vertices and f 2 F is the start equation node. The matching
algorithm Match-Equation returns true if a match is found, else false.

Match(G)
1 assign  ;
2 for each f 2 G.F
3 do C  ;
4 if not Match-Equation(G, f, C, assign, ;)
5 then return (false, assign)
6 return (true, assign)

Match-Equation(G, f, C, assign, vmap)
1 C  C [ {f}
2 if there exits a v 2 G.V such that (f, v) 2 G.E
3 and assign[v] = nil and vmap[v] = nil

4 then assign[v] f
5 return true

6 else for each v where (f, v) 2 G.E and v /2 C
7 and vmap[v] = nil

8 do C  C [ {v}
9 if Match-Equation(G, assign[v], C, assign, vmap)

10 then assign[v] f
11 return true

12 return false

1

f1

ẋ

ẏ

u̇

v̇

�

f2

f3

f4
f5

x

y

u

v

Pendulum 

State after matching   

Algorithm Match-Equation  
returns FALSE and returns  
with f5  colored."

For f5, there is no adjacency 
variable holding for vmap. 
Neither TRUE nor FALSE 
branch are executed."

f5

3.2 After first match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1}

C = {f1}

3.3 After four matches

f1, f2, f3, f4

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f4}

3.4 After five. No matches

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f5}

3.5 After di↵erantiation of f5

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f5}

e5 : x2 + y2 = L

e6 : 2xẋ+ 2yẏ = 0

5
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1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3

Algorithm: Pantelides 

No colored  
variables."

No colored  
variables."

But we have one  
colored equation."

We have match = FALSE"
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f1

ẋ

ẏ

u̇

v̇

�

f2

f3

f4
f5

x

y

u

v

Pendulum 
State after matching   

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x2 + y2 = L

3

f5

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x2 + y2 = L

3

f6

Create a new  
equation node f6  
by differentiating f5. "

State after creating differentiated equation.   

Create edges to  
variables and their 
derivatives. "

3.2 After first match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1}

C = {f1}

3.3 After four matches

f1, f2, f3, f4

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1 ẏ 7! f2 u̇ 7! f3 v̇ 7! f4}

C = {f4}

3.4 After five. No matches

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1 ẏ 7! f2 u̇ 7! f3 v̇ 7! f4}

C = {f5}

3.5 After di↵erantiation of f5

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1 ẏ 7! f2 u̇ 7! f3 v̇ 7! f4}

C = {f5}

e5 : x2 + y2 = L

e6 : 2xẋ+ 2yẏ = 0

5

3.2 After first match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1}

C = {f1}

3.3 After four matches

f1, f2, f3, f4

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f4}

3.4 After five. No matches

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f5}

3.5 After di↵erantiation of f5

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f5}

e5 : x2 + y2 = L

e6 : 2xẋ+ 2yẏ = 0

5

3.2 After first match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1}

C = {f1}

3.3 After four matches

f1, f2, f3, f4

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f4}

3.4 After five. No matches

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f5}

3.5 After di↵erantiation of f5

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f5}

e5 : x2 + y2 = L

e6 : 2xẋ+ 2yẏ = 0

5



Part I 
DAE Basics David Broman 

dbro@kth.se 

43 

Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3

Algorithm: Pantelides 

Repeat again (match 
was FALSE), but now 
with the differentiated 
equation f6."

3.2 After first match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1}

C = {f1}

3.3 After four matches

f1, f2, f3, f4

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1 ẏ 7! f2 u̇ 7! f3 v̇ 7! f4}

C = {f4}

3.4 After five. No matches

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {}
assign = {ẋ 7! f1 ẏ 7! f2 u̇ 7! f3 v̇ 7! f4}

C = {f5}

3.5 After di↵erantiation of f5

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1 ẏ 7! f2 u̇ 7! f3 v̇ 7! f4}

C = {f5}

e5 : x2 + y2 = L

e6 : 2xẋ+ 2yẏ = 0

5
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HyDAE : an E�cient Hybrid Higher Index

Di↵erential Algebraic Equation Solver

David Broman

April 29, 2013

1 Introduction

2 Algorithms

Let G = (F, V,E) be a bipartiet graph, where F is the set of vertices repre-
senting equations and V the set of vertices representing variables. Let assign
be a mutable mapping between variable vertices and equation vertices. Set C
represents colored vertices and f 2 F is the start equation node. The matching
algorithm Match-Equation returns true if a match is found, else false.

Match(G)
1 assign  ;
2 for each f 2 G.F
3 do C  ;
4 if not Match-Equation(G, f, C, assign, ;)
5 then return (false, assign)
6 return (true, assign)

Match-Equation(G, f, C, assign, vmap)
1 C  C [ {f}
2 if there exits a v 2 G.V such that (f, v) 2 G.E
3 and assign[v] = nil and vmap[v] = nil

4 then assign[v] f
5 return true

6 else for each v where (f, v) 2 G.E and v /2 C
7 and vmap[v] = nil

8 do C  C [ {v}
9 if Match-Equation(G, assign[v], C, assign, vmap)

10 then assign[v] f
11 return true

12 return false

1

f1

ẋ

ẏ

u̇

v̇

�

f2

f3

f4
f5

x

y

u

v

Pendulum 

f6

Two variables  
are applicable for 
the FALSE  
branch."

State before calling Match-Equation Cannot take TRUE branch because the 
states of assign and vmap  "

Before first recursive call at line 9 

Color and make  
recursive call."

After all recursion when returning on line 12 

3.6 Before calling match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {}

3.7 Before first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f5}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

6

3.6 Before calling match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {}

3.7 Before first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

6

3.6 Before calling match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {}

3.7 Before first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ}

3.8 After first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy

6

Returns false. 
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1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3

Algorithm: Pantelides 

First step: create new 
differentiated variables"

3.6 Before calling match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {}

3.7 Before first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ}

3.8 After first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy

6

Differentiating equation two times"

3.6 Before calling match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {}

3.7 Before first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ}

3.8 After first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.9 After adding variables

x2 + y2 = L

2xẋ+ 2yẏ = 0

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

6
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f1

ẋ

ẏ

u̇

v̇

�

f2

f3

f4
f5

x

y

u

v

Pendulum 

f6

State before creating new variables 

After adding new variables 

3.6 Before calling match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {}

3.7 Before first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ}

3.8 After first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy

6

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x2 + y2 = L

3

ẍ

ÿ

3.6 Before calling match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {}

3.7 Before first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ}

3.8 After first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.9 After adding variables

x2 + y2 = L

2xẋ+ 2yẏ = 0

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

6

New variables and  
mapping"
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1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3

Algorithm: Pantelides 

Second step: create new 
differentiated equation 
nodes"
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f1

ẋ

ẏ

u̇

v̇

�

f2

f3

f4
f5

x

y

u

v

Pendulum 

f6

State before creating equation nodes 

After adding equation 

ẍ

ÿ

3.6 Before calling match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {}

3.7 Before first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ}

3.8 After first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.9 After adding variables

x2 + y2 = L

2xẋ+ 2yẏ = 0

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

6

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x2 + y2 = L

3

f7

f6

3.6 Before calling match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {}

3.7 Before first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ}

3.8 After first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.9 After adding variables

x2 + y2 = L

2xẋ+ 2yẏ = 0

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.10 After adding equation f6

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

6
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f6

State before creating equation nodes 

After adding all equations 

ẍ

ÿ

3.6 Before calling match

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {}

3.7 Before first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ}

3.8 After first recursive call

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.9 After adding variables

x2 + y2 = L

2xẋ+ 2yẏ = 0

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

6

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x2 + y2 = L

3

f7
f8

f9

3.11 After adding all equation

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

6 Conclusions
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1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3

Algorithm: Pantelides 

Third step: assign 
variables to equations 
for new variables."
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After adding all equations 

ẍ

ÿ

f7
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3.11 After adding all equation

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

6 Conclusions

References

[1] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward. SUNDIALS: Suite of nonlinear and dif-
ferential/algebraic equation solvers. ACM Transactions on Mathematical
Software, 31(3):363–396, 2005.

[2] Iain S. Du↵. On Algorithms for Obtaining a Maximum Transversal. ACM
Transactions on Mathematical Software, 7(3):315–330, 1981.

7

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x2 + y2 = L

3

3.11 After adding all equation

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.12 After assign

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {f6, ẋ, f1, ẏ, f2}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

7
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1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3

Algorithm: Pantelides 

Repeat again with second differentiated 
version of equation five."
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f1

ẋ

ẏ

u̇

v̇

�

f2

f3

f4
f5

x

y

u

v

Pendulum 

f6

ẍ

ÿ

f7
f8

f9
For clarity: view variables and edges where  
vmap[v] = NIL  
"

Before matching 

3.11 After adding all equation

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.12 After assign

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {f6, ẋ, f1, ẏ, f2}

3.13 Before last matching

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching

7

HyDAE : an E�cient Hybrid Higher Index

Di↵erential Algebraic Equation Solver

David Broman

April 29, 2013

1 Introduction

2 Algorithms

Let G = (F, V,E) be a bipartiet graph, where F is the set of vertices repre-
senting equations and V the set of vertices representing variables. Let assign
be a mutable mapping between variable vertices and equation vertices. Set C
represents colored vertices and f 2 F is the start equation node. The matching
algorithm Match-Equation returns true if a match is found, else false.

Match(G)
1 assign  ;
2 for each f 2 G.F
3 do C  ;
4 if not Match-Equation(G, f, C, assign, ;)
5 then return (false, assign)
6 return (true, assign)

Match-Equation(G, f, C, assign, vmap)
1 C  C [ {f}
2 if there exits a v 2 G.V such that (f, v) 2 G.E
3 and assign[v] = nil and vmap[v] = nil

4 then assign[v] f
5 return true

6 else for each v where (f, v) 2 G.E and v /2 C
7 and vmap[v] = nil

8 do C  C [ {v}
9 if Match-Equation(G, assign[v], C, assign, vmap)

10 then assign[v] f
11 return true

12 return false

1
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f1

u̇

v̇

�

f2

f3

f4
f5

Pendulum 

f6

ẍ

ÿ

f7
f8

f9

Before matching 

3.11 After adding all equation

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.12 After assign

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {f6, ẋ, f1, ẏ, f2}

3.13 Before last matching

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching

7

HyDAE : an E�cient Hybrid Higher Index

Di↵erential Algebraic Equation Solver

David Broman

April 29, 2013

1 Introduction

2 Algorithms

Let G = (F, V,E) be a bipartiet graph, where F is the set of vertices repre-
senting equations and V the set of vertices representing variables. Let assign
be a mutable mapping between variable vertices and equation vertices. Set C
represents colored vertices and f 2 F is the start equation node. The matching
algorithm Match-Equation returns true if a match is found, else false.

Match(G)
1 assign  ;
2 for each f 2 G.F
3 do C  ;
4 if not Match-Equation(G, f, C, assign, ;)
5 then return (false, assign)
6 return (true, assign)

Match-Equation(G, f, C, assign, vmap)
1 C  C [ {f}
2 if there exits a v 2 G.V such that (f, v) 2 G.E
3 and assign[v] = nil and vmap[v] = nil

4 then assign[v] f
5 return true

6 else for each v where (f, v) 2 G.E and v /2 C
7 and vmap[v] = nil

8 do C  C [ {v}
9 if Match-Equation(G, assign[v], C, assign, vmap)

10 then assign[v] f
11 return true

12 return false

1
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f1

u̇

v̇

�

f2

f3

f4
f5

Pendulum 

f6

Before matching 

ẍ

ÿ

f7
f8

f9

3.11 After adding all equation

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.12 After assign

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {f6, ẋ, f1, ẏ, f2}

3.13 Before last matching

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {}

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching

7

3.11 After adding all equation

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.12 After assign

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {f6, ẋ, f1, ẏ, f2}

3.13 Before last matching

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {}

3.14 After last matching

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f8, v̇ 7! f4,

� 7! f3, ẍ 7! f7, ÿ 7! f9}
C = {f7, ẍ, f8, u̇, f3}

7

Successful match!"

HyDAE : an E�cient Hybrid Higher Index

Di↵erential Algebraic Equation Solver

David Broman

April 29, 2013

1 Introduction

2 Algorithms

Let G = (F, V,E) be a bipartiet graph, where F is the set of vertices repre-
senting equations and V the set of vertices representing variables. Let assign
be a mutable mapping between variable vertices and equation vertices. Set C
represents colored vertices and f 2 F is the start equation node. The matching
algorithm Match-Equation returns true if a match is found, else false.

Match(G)
1 assign  ;
2 for each f 2 G.F
3 do C  ;
4 if not Match-Equation(G, f, C, assign, ;)
5 then return (false, assign)
6 return (true, assign)

Match-Equation(G, f, C, assign, vmap)
1 C  C [ {f}
2 if there exits a v 2 G.V such that (f, v) 2 G.E
3 and assign[v] = nil and vmap[v] = nil

4 then assign[v] f
5 return true

6 else for each v where (f, v) 2 G.E and v /2 C
7 and vmap[v] = nil

8 do C  C [ {v}
9 if Match-Equation(G, assign[v], C, assign, vmap)

10 then assign[v] f
11 return true

12 return false

1
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1 return a,O

• Let A be a variable association mapping, where A[i] = j if v̇i = vj , else
A[i] = 0 .

• Let B be an equation association mapping, where B[i] = j if ej is the
di↵erentiated version of ei, else B[i] = 0

• v̄ is a vector of variables, where v̄[i] is the ith element. Index i = 1..nv.

Pantelides(G, vmap, eqmap)
1 assign  ;
2 for each e 2 G.F
3 do f  e
4 repeat

5 C  ;
6 match  Match-Equation(G, f, C, assign, vmap)
7 if not match
8 then for each v 2 C where v 2 G.V
9 do let v0 be a vertex, such that v0 /2 G.V

10 vmap[v] v0

11 G.V  G.V [ {v0}
12 for each f 2 C where f 2 G.F
13 do let f 0 be a vertex, such that f 0 /2 G.F
14 eqmap[f ] f 0

15 G.F  G.F [ {f 0}
16 for each v 2 G.V where (f, v) 2 G.E
17 do G.E  G.E [ {(f 0, v), (f 0, vmap[v])}
18 for each v 2 C where v 2 G.V
19 do assign[vmap[v]] eqmap[assign[v]]
20 f  eqmap[f ]
21 until match
22 return assign

3 Pendulum Example

Construct a bipartite graph G = (F, V,E).

3

Algorithm: Pantelides 

Last equation and successful match."
Algorithm terminates."
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f1

u̇

v̇

�

f2

f3

f4
f5

Result of Pantelides on Pendulum 

f6

ẍ

ÿ

f7
f8

f9

3.11 After adding all equation

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.12 After assign

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {f6, ẋ, f1, ẏ, f2}

3.13 Before last matching

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {}

3.14 After last matching

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f8, v̇ 7! f4,

� 7! f3, ẍ 7! f7, ÿ 7! f9}
C = {f7, ẍ, f8, u̇, f3}

7

ẋ

ẏ

x

y

u

v

3.15 Output

ẋ = u (1)

ẏ = v (2)

u̇ = � · x (3)

v̇ = � · y � g (4)

x2 + y2 = L (5)

2xẋ+ 2yẏ = 0 (6)

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0 (7)

ẍ = u̇ (8)

ÿ = v̇ (9)

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0

f6(x, ẋ, y, ẏ) = 0

f7(x, ẋ, ẍ, y, ẏ, ÿ) = 0

f8(ẍ, u̇) = 0

f9(ÿ, v̇) = 0

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching

8

3.15 Output

ẋ = u (1)

ẏ = v (2)

u̇ = � · x (3)

v̇ = � · y � g (4)

x2 + y2 = L (5)

2xẋ+ 2yẏ = 0 (6)

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0 (7)

ẍ = u̇ (8)

ÿ = v̇ (9)

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0

f6(x, ẋ, y, ẏ) = 0

f7(x, ẋ, ẍ, y, ẏ, ÿ) = 0

f8(ẍ, u̇) = 0

f9(ÿ, v̇) = 0

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching

8

3.15 Output

ẋ = u (1)

ẏ = v (2)

u̇ = � · x (3)

v̇ = � · y � g (4)

x2 + y2 = L (5)

2xẋ+ 2yẏ = 0 (6)

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0 (7)

ẍ = u̇ (8)

ÿ = v̇ (9)

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0

f6(x, ẋ, y, ẏ) = 0

f7(x, ẋ, ẍ, y, ẏ, ÿ) = 0

f8(ẍ, u̇) = 0

f9(ÿ, v̇) = 0

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching

8
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Result of Pantelides on Pendulum 

3.15 Output

ẋ = u (1)

ẏ = v (2)

u̇ = � · x (3)

v̇ = � · y � g (4)

x2 + y2 = L (5)

2xẋ+ 2yẏ = 0 (6)

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0 (7)

ẍ = u̇ (8)

ÿ = v̇ (9)

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0

f6(x, ẋ, y, ẏ) = 0

f7(x, ẋ, ẍ, y, ẏ, ÿ) = 0

f8(ẍ, u̇) = 0

f9(ÿ, v̇) = 0

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching

8

3.15 Output

ẋ = u (1)

ẏ = v (2)

u̇ = � · x (3)

v̇ = � · y � g (4)

x2 + y2 = L (5)

2xẋ+ 2yẏ = 0 (6)

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0 (7)

ẍ = u̇ (8)

ÿ = v̇ (9)

f1(ẋ, u) = 0

f2(ẏ, v) = 0

f3(u̇,�, x) = 0

f4(v̇,�, y) = 0

f5(x, y) = 0

f6(x, ẋ, y, ẏ) = 0

f7(x, ẋ, ẍ, y, ẏ, ÿ) = 0

f8(ẍ, u̇) = 0

f9(ÿ, v̇) = 0

4 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

5 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching

8

3.11 After adding all equation

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}

C = {f6, ẋ, f1, ẏ, f2}

3.12 After assign

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {f6, ẋ, f1, ẏ, f2}

3.13 Before last matching

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4,

ẍ 7! f8, ÿ 7! f9}
C = {}

3.14 After last matching

vmap = {x 7! ẋ, y 7! ẏ, u 7! u̇, v 7! v̇, ẋ 7! ẍ, ẏ 7! ÿ}
eqmap = {f5 7! f6, f6 7! f7, f1 7! f8, f2 7! f9}
assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f8, v̇ 7! f4,

� 7! f3, ẍ 7! f7, ÿ 7! f9}
C = {f7, ẍ, f8, u̇, f3}

7

Is the system of equations 
solvable if we replace the old 
equations with their 
differentiated version?"

By substituting (8) and (9) we 
have"

Which is solvable for 
highest derivative"

Same result if converted 
into order one equation"

6 Pendulum Revisited

�T/l = �

m = 1

l2 = L

ẍ = � · x
ÿ = � · y � g

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0

7 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

8 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

9 Conclusions
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12 Exercise - di↵entitated, highest derivatives..

12.1 Incidence Matrix and Adjacency List

0

@

ẍ ÿ �

f1 1 0 1
f2 0 1 1
f3 1 1 0

1

A

f1(ẍ,�) = 0

f2(ÿ,�) = 0

f3(ẍ, ÿ) = 0

12.2 Assignments

0: assign = {ẍ 7! f1}
1: assign = {ẍ 7! f1, ÿ 7! f2}
2: assign = {ẍ 7! f3, ÿ 7! f2,� 7! f1}

12.3 Equation dependency graph

f1(f2) = 0

f2(f3) = 0

f3(f1) = 0

12.4 BLT sort using Tarjan’s algorithm

sorting order = [0, 1, 2]

component IDs = [0, 0, 0]

0

@

� ÿ ẍ

f1 1 0 1
f2 1 1 0

f3 0 1 1

1

A
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13 Exercise - di↵entitated, highest derivatives

2.

13.1 Incidence Matrix and Adjacency List

0

BBBB@

ẋ ẏ u̇ v̇ �

f1 1 0 0 0 0

f2 0 1 0 0 0

f3 0 0 1 0 1
f4 0 0 0 1 1
f5 1 1 1 1 0

1

CCCCA

f1(ẋ) = 0

f2(ẏ) = 0

f3(u̇,�) = 0

f4(v̇,�) = 0

f5(ẋ, ẏ, u̇, v̇) = 0

13.2 Assignments

0: assign = {ẋ 7! f1}
1: assign = {ẋ 7! f1, ẏ 7! f2}
2: assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3}
3: assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f3, v̇ 7! f4}
4: assign = {ẋ 7! f1, ẏ 7! f2, u̇ 7! f5, v̇ 7! f4,� 7! f3}

13.3 Equation dependency graph

f1(f5) = 0

f2(f5) = 0

f3(f4) = 0

f4(f5) = 0

f5(f3) = 0

13.4 BLT sort using Tarjan’s algorithm

sorting order = [1, 0, 4, 2, 3]

component IDs = [2, 1, 0, 0, 0]

0

BBBB@

ẏ ẋ u̇ � v̇

f2 1 0 0 0 0

f1 0 1 0 0 0

f5 1 1 1 0 1
f3 0 0 1 1 0

f4 0 0 0 1 1

1

CCCCA
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Part II 
Matching 

Part III 
BLT Sorting 

Part IV 
Pantelides 

Part V 
Dummy Derivatives 

Index Reduction 

Should differentiated equations from Pantelides be 
used for index reduction?"

6 Pendulum Revisited

�T/l = �

m = 1

l2 = L

ẍ = � · x
ÿ = � · y � g

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2 = 0

7 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

8 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.

9 Conclusions
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Shumaker, and C. S. Woodward. SUNDIALS: Suite of nonlinear and dif-
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11

The reduced problem (index-1) is mathematically 
correct, but since equation"

ẋ = u

ẏ = v

u̇ = � · x
v̇ = � · y � g

x

2 + y

2 = L

is not present, numerical approximation gives a 
“drifting problem”. In our example, the pendulum’s 
length will grow..."
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Part IV 
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Part V 
Dummy Derivatives 

Dummy Derivative 
Basic Idea: "
-  Include all differentiated equations"
-  For each equation, introduce a “dummy 

derivative” variable. "

All constraints are present and the number of 
equations and unknowns match."

The actual algorithm is presented by Mattson and Söderlind (1993)"

6 Pendulum Revisited

�T/l = �

m = 1

l2 = L

ẍ = � · x
y00 = � · y � g

x2 + y2 = L

2xẋ+ 2yy0 = 0

2xẍ+ 2ẋ2 + 2yy00 + 2y02 = 0

7 DAE Basics

F (x, ẋ, y, t) = 0

where x,2 Rn, ẋ 2 Rn, y 2 Rm, F : G ✓ Rn ⇥ Rn ⇥ Rm ⇥ R ! Rn+m.

8 Evaluation

We need to make it very convincing that our implementation is faster than
anything that exists today. We need to compare with JModelica, Dymola, and
OpenModelica.

9 Related Work

Pantelides algorithm [?] is an important part of index reduction. We are using
SUNDIALS [?] solver suite for solving the ODE. Du↵ [?] describes the matching
algithm and Du↵ and Reid [?] describes how Tarjan’s algorithm[?] can be used to
sort the system of equations. Mattsson and Söderlind [?] describes the dummy
derivative method. Mattsson et al. [?] describes how dynamic state selction is
done in Dymola.

Initialization of Hybrid DAEs in Modelica is described by Mattsson et al. [?].
Van Beek et al. [?] have an interesting article about transitions between

modes in an Hybrid DAE.
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Summary and Conclusions 
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Summary and Conclusions 

•  Matching finds a mapping between variables and equations.  
Used both in BLT sorting and Pantelides algorithm. 

Thanks for listening! 

Some key take away points: 

•  BLT sorts blocks of equation, where each block represents 
an algebraic loop. Uses matching and Tarjan’s algorithm. 

•  Pantelides algorithm determine the subset of equations 
that needs to be differentiated. 

•  The Dummy Derivative method perform correct index 
reduction and avoids the drifting problem. 


