Principles of Equation-Based
Object-Oriented Modeling and Languages

Module D: Co-simulation and the Functional Mock-up Interface

Mini-course, Scuola Superiore Sant'/Anna, Pisa, Italy.
December 9-10, 2014

David Broman
Associate Professor, KTH Royal Institute of Technology

Assistant Research Engineer, University of California, Berkeley

Course Structure

Module A
EOO Languages and Modelica Fundamentals

O g Module B
g‘(Gy DAEs and Algorithms in EOO Languages

Module C
Modelyze — Defining Equation-Based DSLs

Module D
Co-simulation and the Functional Mock-up Interface

Part | Part Il

David Broman Introduction FMI Formalization
dbro@kth.se to FMI and Master Algorithms

Part | Part Il
Introduction to FMI FMI Formalization and
. Master Algorithms

init. : RZO — Se
sete: Se x U xV — S,
get,: Se x Y. =V
doStep,, : Se % R>o — Se X R>o

Part | Part Il
David Broman Introduction FMI Formalization
dbro@kth.se to FMI and Master Algorithms

Part |
Introduction to FMI

Part | Part Il
David Broman == Introduction FMI Formalization
dbro@kth.se to FMI and Master Algorithms

Cyber-Physical Systems Design

S = M, — M e
Jows = My — Mo)
W= e FMI Co-simuation
Model M= = s
Equation-based model Various models of computation (MoC)
Modeling

Modeling

System

Physical system (the plant) Cyber system: Computatlon (embedded) + Networking

Part |
David Broman = Introduction FMI Formalization
dbro@kth.se to FMI and Master Algorithms

What is FMI?

Functional Mock-Up Interface (FMI) is a standard,
— not a tool.

Initiative from Daimler AG. Developed in a EU project

~ called MODELISAR. Now maintained by Modelica

Association.

Current version is 2.0.

Currently supported by more than 50 tools (open source and commercial).

Functional Mock-Up Unit (FMU) is a model instance that

can me used in a simulation. \

An FMU is a zip file containing:

- An XML file describing static info (e.g., port names, — —__
variables, supported properties)

- C-files and dynamically loadable libraries implementing —
the behavior.

Part | Part Il

David Broman — Introduction FMI Formalization
dbro@kth.se to FMI and Master Algorithms

FMI for Model Exchange

XML Equations/ Imports Solver
. . o .- - >
Simulation tool A | _EXPOMS _ | | Description | Functions j

FMU for model exchange (slave) AP |Simulation tool B
(master)

FMI for Co-Simulation

Description | Functions | = [[----- > (master)

s ons] Simulation tool B
XML Equations/ Solver Imports
Simulation tool A [-------

FMU for co-simulation (slave)

Proprietary
E uation&' ' _Communication XML ™
d Solver | [™ | Description | Wrapper Imports | Simulation tool B

Functions (master)

FMU for co-simulation (slave) | FMI

Simulation tool A \—‘______———'— API

Part |

David Broman Introduction FMI Formalization
dbro@kth.se to FMI and Master Algorithms

Part Il
FMI Formalization and
Master Algorithms

init. : R>9 — Se
sete.: Se x U, xV — S,
get,: SexY. =V
doStepc 0 Se X RZO — S X RZO

Part | Part Il
David Broman Introduction FMI Formalization

dbro@kth.se to FMI and Master Algorithms

FMU Connections and I/O Dependencies

A o FMU instances. Can come from the
b2 <l

2 bl same FMU
FMUM= MU FMU
Input and output port
D variables
IFMU;

Can output be directly
dependent on the input?

@
" Integrator | y1 does not have a
D¢ j h‘/ direct dependency
on u, but y2 does.
Scale
y2
I
I/O dependencies together with port FMU

connections form a graph.

Part | Part Il
David Broman Introduction FMI Formalization
dbro@kth.se to FMI and Master Algorithms

B C
FMU#= :1 FMU :i c: FMU Set of FMU instances in a model C
FMU instance identifier ceC
D Set of state valuations for instance c Se
{FMU- Set of input port variables for instance ¢ U.
Set of output port variables for instance ¢ = Y.
Set of values that a variable may take on V
I/O dependency for instance ¢ D.CU.xY,
@ (o)
@ Set of all input variables in a model U=U.cUec
o / Set of all output variables in a model = U.cc Ye
\. &) Set of all I/O dependencies = Ueee De
(@) €D) Port mapping P:U—-Y

Part | Part Il
David Broman Introduction FMI Formalization

dbro@kth.se to FMI and Master Algorithms

1

A FMI formalization (subset of standard)

Set of FMU instances in a model C
FMU instance identifier ceC
inite : RZO — Se Set of state valuations for instance ¢ Se
Lo Set of input port variables for instance ¢ U.
setc : SC X UC XV — SC Set of output port variables for instance ¢ Y.
g v v Set of values that a variable may take on V
get, : ve X Yo — I/O dependency for instance ¢ D.CU. xY,
doStep; :Se X Rsg — Se X R>g | Set of all input variables in a model U=U.ccUe
N N Set of all output variables in a model Y =Ucee Ye
Set of all I/O dependencies D =U,cc De
Port mapping P:U—-Y
(A0) If doStep_(s,h) = (s’,h’) then 0 < b’ < h. ——— fh'< h, doStep

rejected h. In such a
case “roll-back” is
needed.

(A1) If doStep,(s,h) = (s',h’), then for any h"” where 0 <
h" < h', doStep,(s,h’") = (s",h") for some s".

Part | Part Il

David Broman Introduction - FMI Formalization
dbro@kth.se to FMI and Master Algorithms

12

FMI 2.0 restrictions not seen in previous versions

init. : R>qg — S.
- Version 2.0 makes it

set.. : S_X U.xV— S impossible to implement a
o)) / component with zero latency
(this was not a restriction in
get_ : SexY, =V previous versions!)

doStep(; : Se X R>g = Sc X R>o

¥
“There is the additional restriction in “slavelnitialized”
state that it is not allowed to call fmi2GetXXX :
functions after fmi2SetXXX functions without an For F.Ml :0 EUpport l:)yf.md
fmi2DoStep call in between.” co'sm_w a Io.n,.We elieve
(FMI standard 2.0, July 25, 2014, page 104) that this restriction was a
major mistake. We hope

» that future versions will
"... communication step size (hc). The latter must be > 0.0” improve this situation...
(FMI standard 2.0, July 25, 20{4, page 100)

Part | Part Il
David Broman Introduction FMI Formalization

dbro@kth.se to FMI and Master Algorithms

13

Master Algorithm

__— The MA orchestrates the execution of the FMUs

Master
QUCIUUIEOTVEY _ Master Algorithms are not part of the standard. It is “up to
the tool” to implement it.

\ EMSOFT 2013 work. Define a MA that can be proven to
terminate and is determinate.

FMUP=> MUt FMU

Part | Part Il
Introduction FMI Formalization

David Broman
dbro@kth.se to FMI

and Master Algorithms

14

Algorithm 1: Order-Variables

Algorithm 1: Order-Variables.

Input: Port mapping P, global dependency relation D,
and global set of variables X. X = U UY
Output: An ordered list Z of variables, or error.

1. Let G be a directed graph, where the vertices are rep-
resented by port variables X and an edge e € X x X is
a variable dependency. The set of all edges F is then
constructed by E = D U{(y,u) | u € UA P(u) = y}.

2. Perform a topological sort on G. If a cycle in G is
found, terminate and return error. If no cycles are
found, the resulting list of variables is Z.

Part | Part Il
Introduction FMI Formalization

David Broman
dbro@kth.se to FMI

and Master Algorithms

15

Algorithm 2: Master-Step

David Broman

dbro@kth.se

Algorithm 2: Master-Step.

Input: Set of instances C, ordered variable list Z, port
mapping P, the maximal step size hpq:, and a mutable
state mapping m of size |C|.

Output: Updated state mapping m and the performed
step size h.

1. Set values for all input variables:
For each u € Z (in order) where u € U do

(a) y == P(u)
(b) vi= get, (mle,],)
(c) mleu] := sete, (Mlcu], u,v)

2. Save the states of all FMUs to enable rollback:

r:=m
3. Set communication step size to an initial default value:
h:= hmaz
4. Find h acceptable by all FMUs:
For each ¢ € C do
(a) (', 1) := doStep, ([, hur)
(b) h:= min(h,h’)

(c) m[c] =

Part |
Introduction

5. Assert 0 < h < hpaz // follows from Assumption (A0)

6. If h < hmas then
For each c € C' do
(a) (s',h) := doStep(r[c], h)
(b) Assert b’ =h // follows from Assumption (A1)
(c) mld:=¢

// roll back and perform step h

7. Return m and h.

Part Il
FMI Formalization

to FMI

Predictable Step Size

and Master Algorithms

16

David Broman

dbro@kth.se

Problems with Algorithm 2
* Requires that all FMUs support rollback

+ Inefficient if the FMU can predict the next event.

Propose to extend FMI with one new function:

Returns the upper bound of the
communication step-size that an

getMaxStepSize, : Sc — R>o U {00}

/ FMU can accept

Cp: Set of Predictable FMU Instances
Cg: Set of FMUs with rollback capabilities

C,: Set of Legacy FMUs that neither implement rollback, nor are predictable.

(A4) If c € Cp and s € S. and getMaxStepSize, (s) = h
then for all A’ where 0 < h’ < h, doStep_(s,h') =

(s',h") for some s'.

(a) [CL| < 1.
(b) CruCrUCp =C.

(C) CoNCr=0and CrNCp=0and CpnNCr, = 0.

Part |
Introduction

Part Il
FMI Formalization

to FMI

and Master Algorithms

Algorithm 3: Master-Step with Predictable 1
Step Size

Algorithm 3: Master-Step With Predictable Step Sizes. 5. Perform doStep on all instances with rollback:
hmin =h
For each ¢ € Cr do

Input: Set of instances C', ordered variable list Z, port
mapping P, the maximal step size hpq, and a mutable

state mapping m of size |C|. (a) (s',h') := doStep,(m/[c], h)
Output: Updated state mapping m and the performed (b) hmin = min(h', hmin)
step size h. (c) mlg) := s
1. Set values for all input variables: 6. If hynin < h then h := hyni and goto step 4.
For each u € Z (in order) where u € U do 7. Perform doStep on the legacy FMU (if it exists)
(a) y:= P(u) If ¢ € Cr and doStepOnLegacy then
(b) v:=get, (mlcy],y) (a) (s',h') := doStep,(mlc], h)
o (b) mld] == &
() mlew] := sete, (mfew], u,v) (c) doStepOnLegacy := false
2. Find the minimal predictable communication size: (d) If K’ < h then h := h’ and goto step 4.

h:= min({getMaXStepSizec(m[c]) | c€ Cp}U{hmas}) 8. Perform doStep on all FMUs with predictable step size:

For each c € Cp do

(a) (', ") := doStep, (m[c], h)

(b) Assert b’ = h // follows from Assumption (A4)
(c) m[c] =&

3. Save the states for all instances that can perform rollback:
(a) For each ¢ € Cr do r[c] := m[c]
(b) doStepOnlLegacy := true
(c) Goto step 5.

9. Return m and h.
4. Restore states for rollback instances.

For each ¢ € Cr do m[c] := r]c]

Part | Part Il

Introduction - FMI Formalization
dbro@kth.se to FMI and Master Algorithms

18

Reference Papers

+ Blockwitz et al. Functional Mockup Interface 2.0: The Standard for Tool
independent Exchange of Simulation Models, In Proceedings of the 9th
International Modelica Conference, 2012
(General overview of an early version of 2.0, not the final release)

« David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee, Michael
Masin, Stavros Tripakis, and Michael Wetter. Determinate Composition of
FMUs for Co-Simulation. In Proceedings of the International Conference on
Embedded Software (EMSOFT 2013), Montreal, Canada, 2013.

(Defines the master algorithm and formalization that we presented here)

« David Broman, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros
Tripakis, and Michael Wetter. Requirements for Hybrid Cosimultion, EECS
Technical report No. UCB/EECS-2014-157, UC Berkeley, August 14, 2014.
(A document describing requirements and test cases for hybrid co-simulation)

Part | Part Il

David Broman Introduction FMI Formalization
dbro@kth.se to FMI and Master Algorithms

19

Summary and Conclusions

Part | Part Il
David Broman Introduction FMI Formalization
dbro@kth.se to FMI and Master Algorithms

20

Summary and Conclusions

Some key take away points:

* The FMI standard is used in both industry and academia.

* There are two main modes: FMI for model exchange and
FMI for co-simulation.

* We have presented a formalization of a core of FMI and |
proposed master algorithms that are determinate.

* Note, however, that the latest FMI standard for co-
simulation, have made it impossible to encode such
hybrid co-simulation correctly. We hope that we can
change this in the next version of the FMI standard.

Thanks for listening!

Part | Part Il

David Broman Introduction FMI Formalization
dbro@kth.se to FMI and Master Algorithms

